~A24
S

AD-A248 g7
iy

APRL 15927 E

HARDWARE-VERIFICATION
THROUGH
LOGIC EXTRACTION

DISSERTATION

Michael Alan Dukes
Captain, US Army

AFIT/DS/ENG /92-1

e 92-08146
e e | ARG

Distribution Unlimited
DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

— S ————
S . ———

Wright-Patterson Air Force Base, Ohio

92 3 31 091




AFIT/DS/ENG/92-1

HARDWARE-VERIFICATION
THROUGH
LOGIC EXTRACTION

DISSERTATION

Michael Alan Dukes
Captain, US Army

AFIT/DS/ENG/92-1

Approved for public release; distribution unlimited

Acou;i om Yer
1 NT D GRasl

3 AR N 0
| Hawv ooruiced O
PoJustif.oatlon ]

By
1 - t
Disteibulitinn/

Avaiiatility Codes
’ ‘Aval) amd/er
Dist | Spealal

MU

oo




AFIT/DS/ENG/92-1

HARDWARE-VERIFICATION THROUGH LOGIC EXTRACTION

DISSERTATION

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy

Michael Alan Dukes, B.S., M.S.E.E

Captain, US Army

March, 1992

Approved for public release; distribution unlimited




AFIT/DS/ENG/92-1

HARDWARE-VERIFICATION THROUGH LOGIC EXTRACTION

Michael Alan Dukes, B.S., M.S.E.E.

Captain, USA

Approved:

P e et 3 Ménch 2

Frank M. Brown, Chairman

\ iad S loted 72
_Jopnne E. %t The Ohio State University)
3ma g

Matthew KabrisKy
MMMZ W d /«4« g

Mark A. Mehahc

Sy Oofoenps gttt 1922,

Henry Poddczny

Accepted:

E&%\N\\ Q.\:'\-U.D«/(

J. S. Przemieniecki
Institute Senior Dean




Preface

When I first began work on logic extraction it appeared that the process of deriving hierarchy
from a “sea” of transistors was intuitive. From observing engineers working on layout descriptions,
it appeared that the human’s ability to generate simple gate-level schematics from a transistor
netlist was as simple as a bird taking to flight. However, as the process of a bird flying is more
complicated than a matter of flapping its wings, logic extraction is more complicated than a matter
of just matching a template or a rule. There are properties of the bird not readily apparent to
the observer, such as the aerodynamics of the wings and the coordination of guidance between the
tail and the wings. In much the same manner, there are properties of logic extraction not readily

apparent to the engineer, such as connectivity, internal and external, of an extracted component.

Just as the Wright brothers captured the essence of flight, I have captured the essence of
logic extraction. For the past several years, others have tried to perform logic extraction and
thought that they had achieved it. Now that logic extraction is presented in a formal fashion in
this dissertation, I hope that the interested individual will see that it is not as simple as it appears.
I also hope that using logic extraction for hardware-verification will become more popular than

simulation.

I wish to acknowledge my committee for the time they invested proof-reading my dissertation.
My committee members, Dr. Frank M. Brown, Dr. Joanne E. DeGroat, Dr. Matthew Kabrisky,
Dr. Mark A. Mehalic, and Dr. Henry Potoczny, all provided helpful comments and support in my
research. I am especially grateful to Dr. Frank M. Brown for keeping all the details in the right
order and to Dr. Joanne E. DeGroat for keeping the macroview of the research in perspective. The

talents of both provided the appropriate balance.

I also wish to express my appreciation to the Solid State Electronics Directorate of Wright
Laboratory. Wright Laboratory provided all of the equipment and lab space for my work. Working

at Wright Laboratory helped provide additional insight into the needs of the Army and Air Force,

i




which helped guide my work. I am indebted to Dr. John Hines who orchestrated all of the support
and Darrell Barker for the time he spent ensuring all of the equipment was arriving when needed.
I also want to mention the support I received from Luis Concha and Captain Karen Serafino who
performed related work to my research as well as Debora McDivitt and Valerie Holler who ensured
I arrived at various TDY locations when needed. If I have left anyone out, I apologize, it was not

intentional.

The dissertation contains nine chapters and four appendices. Chapter 1 is an introduction to
the dissertation. Chapter 2 discusses different methods used in comparing behavioral specifications,
structural specifications, and layout specifications. Chapter 3 contains a survey of past attempts at
logic extraction and a description of the structural specification and layout specification used in the
dissertation. Chapter 4 demonstrates the consistency, completeness, and termination properties of
logic extraction. In Chapter 5, several hardware delay models used to demnnstrate the feasibility
of pin-to-pin critical path analysis are presented. A pin-to-pin critical path analysis procedure with
logic extraction is discussed in Chapter 6. Some results using logic extraction are presented in
Chapter 7. Chapter 8 lists some limitations that impact on the completeness of logic extraction.

Chapter 9 lists conclusions and recommendations for future work.

Several appendices are provided with the dissertation. They serve to provide some background
material and support to the content of the dissertation. Appendix A contains definitions of terms
and concepts used in the dissertation. Appendix B contains suggestions for improving the efficiency
of the logic extraction process. Appendix C is a demonstration of how HOL is used to compare a
behavioral specification and a structural specification. Appendix D is an approach to translating
VHDL data-flow models to VHDL structural models. Finally, Appendix E is a brief discussion of

formal methods.

Michael Alan Dukes




Table of Contents

Page

Preface . . . . . . . . . . il
List of Acronyms . . . . . . . . . .. . . ix
List of Figures . . . . . . . .. .. . . ... . . . X
Listof Tables . . . . . . . . .. . . xit
Abstract . . . . .. e e e e Xiii
L. Introduction . . . . ... ... 1
Computer Aided Design of Hardware. . . . . ... .. .. ... 4

Problem . . ... ... . ... .. .. 6

Solution. . . . .. ... ... ... 8

Overview . . . . . . . o e 8

IL Validation, Synthesis, and Verification . . .. ... ... ....... 10
Validation Techniques . . . . . . ... ... ... ........ 10

Synthesis . . . . . ... ... .. ... ....... e 12

Verification Methods . . . . . ... .. ... ... ....... 16

Summary . . . . ... e 18

III.  Logic Extraction, VHDL, and Transistor Netlists . . . ... .. ... 19
A Survey of Logic Extraction . . . .. .. ... .. ....... 19

Logic Extraction through GES . . . .. ... ... ... 19

Prolog vs. Forward-Chaining Expert Systems . . . . . . 19

Prolog vs. Other Languages . . . . . ... ... ... .. 27

Summary . ... ... ... 22




The Representation of Hardware Structure Through VHDL .
VEDL Syntax . . ... ... ... ... .. ... .....
Properties of Structural VHDL . . . . . .. .. ... ..

Transistor Netlist Representation . . . . . . ... ... .. ...
Generating Transistor Netlists from Magic . . . .. ...

Converting Transistor Netlists to Prolog Clause Form . .

IV. A Formal Approach to Logic Extraction . . .. ... ... ... ..
Defining Lists . . . . . .. ... . .. . ...
Template for Logic Extraction . . . ... ... .. ... ....
Definitions for Using CMOS Level-1 Rules . . . . . .. ... ..
Guaranteeing Termination for Logic Extraction . . . . .. . ..

Case 1. . . . . . . e e e e

Design Rule Checking . . . . . .. ... ... ... .......
Identifying External Design Errors . . . ... ... ...

Prolog Implementation for Identifying External Design Er-

TOTS . . & v v vt b e i e e e e e e e e e e e e e e e e e e

V. Delay Models for VAHDL . . . . . ... ... ... ...........
Calculating Delays from Layout . . . ... .. ... ... ...

Determining Propagation Delay in VHDL . . . . . .. .. ...

Delay Model Specifiedin VHDL . . . . . .. ... .. ..

Delay Model for Loading in VHDL . . . .. .. ... ..

Hybrid Delay Model in VHDL . . . . .. ... ... ...

vi

Page
23
23
24
26
26
27

30
30
37
38
43
44
44
46
46
46

49
52

35
55

37
57
59




VI.  Critical Path Analysis . .. ..... ..

................

Consideration of Feedback in Critical Path Analysis . .. ...

Extracting Critical Paths . . . . .
Path Generation Without Feedback

Efficiency . . . .. .. ... .. ..
False Paths . . . . ... ... ...

VII. Examples and Results . . .. ... ...

Clock Generator . ... ......

60,000 Transistor Design . . . ..

................

...............

................

................

................

................

................

Performance on a 250,000-Transistor Design . . . . . . .. ...

VIII. Limitations . .. ... .. ........

IX. Conclusions and Recommendations . . .

Appendix A.

Appendix B.

Conclusions . . . . ... ... ...

Definitions . . . ... .. ..

................

................

................

................

Definition of Behavioral and Structural Specification . . . . . .

Definitions for Other Terms . . . .

Efficiency Issues . . ... ..
Logic Extraction . . . .. ... ..
Extraction Without Indexing . . .
Signature Components. . . . . . .
Eliminating Duplicates . . . . ..

Reducing Prolog Rule Complexity

vil

................

12
72
74
75
(s

79

83
83
84

86
86
89

91
91
91
93
95
96




Appendix C. Using HOL . . . . .. ... .. . .. . . .. ..., 100
Preliminaries . . . . .. ... ... ... ............. 100

Showing Structure Implies Behavior Througl. HOL . . . . . . . 101

Appendix D. Translating Data Flow to Structure . . .. ... ... .. 112
Introduction . . . ... ... ... 112

The Overall Translation Process . . . . ... .... ... 112

Assumptions . . . ... L. oL L .. 112

Theentity . ... ... ... ... ... .. ......... 113

The architecture . . . . ... ... ........... 114

Thepackage . . . ... .. .. ... ... ........ 116

The packagebody . ... ................ 118

Translating Data Flow to Structure . ... ........... 120

Analysis of the VHDL Model . . .. ... ... .. ... 120

Generating Structural VHDL . . . . .. ... ... ... 124

Limitations and Features. . . . . .. ... ... ..... 127

Running d2s . ... ... ... ... .. ... ... ... ..., 127

Prolog Codeford2s . . .. ... ... ... .......... 129

Corrections to vhdl_parser . . . . . .. ... ... ... ..... 138

Uncorrected Problems with vhdlparser . . . ... .. .. ... 141

Conclusion . . . . .. . .. .. ... ... 141

Appendix E. Formal Methods . . . . .. ... ... ........... 143
Bibliography . . . . . ... 146
Vita . . e e e 150

vii



Acronym

ALU
ASIC
BIST
CMOS
CAD
cif
DOD
DRC
esim
GES
GND
HDL
HOL
mextra
mossim
sim
STOVE
Vdd
VHSIC
VHDL

List of Acronyms
Explanation

Arithmetic Logic Unit

Application Specific Integrated Circuit
Built-In Self Test

Complementary Metal-Oxide-Semiconductor
Computer Aided Design

Caltech Intermediate Format
Department of Defense

Design-Rule Check

Switch level simulator

Generalized Extraction System
Ground or Zero Volts

Hardware Description Language
Higher Order Logic

Translate mask level format to transistor netlist format

MOS simulator

Transistor netlist generated by mextra
Sim To VHDL Extraction

Supplied Voltage, High, or +5 Volts
Very High Speed Integrated Circuit
VHSIC Hardware Description Language

ix




Figure

10.
11.
2.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

List of Figures

General CAD Development of Hardware. . . . . . . ... .. .. ..
General CAD Development Using Formal Hardware-Verification.

Circuit Diagrams for a NOR-Gate and Flawed NOR-Gate. . . . . .
Lattice and Operator Tables for {0,X,1}.. . .. ... ... ... ..
Logic Extraction. . . . . . .. .. ... L0 oL
Forward-Chaining System. . . . . . . .. ... ... ... ......
Possible NAND Gate. . . . . ... ... ... ... ... ......
Relation Between an Entity and Components. . . . . .. .. .. ..
Some Transistor-Level Design Errors. . . . . . . ... .. ... ...
Some Gate-Level Design Errors.. . . . . . ... ... .. ......
A Simple Delay Model. . . . . . ... ... ... ... .......
Delays Specified in Description. . . . . . .. ... .. .. ......
Delays Calculated from Fanout. . . . . . .. ... .. ........
Huffman Model. . . . . . . . .. ... ... ... . .
Initial Application of the join Function. . . ... .. ... ... ..
General Application of the join Function. . . . ... ... .....
Critical Path Analysis. . . . . .. .. ... ... . ... .......
Typical Clocked JK Flip-Flop. . . . .. .. ... .. ........
Circuit Diagram of Normal and Abnormal Circuit. . . . .. .. ..
Layout of the ALU Integrated Circuit. . . . . . ... .. .. ....
Four-Input AND Gate and Simple Circuit. . . . ... ... ....
Abstract View of a Behavioral Specification. . . . . . ... ... ..
Schematic for register! Extraction Rule. . . . .. .. .. ... ...
Schematic for register? Extraction Rule. . . . .. .. .. ... ...

Behavioral Specifications for a Three-Input Device. . . . . . . . ..




Figure
26. Three Implementation Specifications. . . . . ... ... ... .....

27. Expression Trees from Concurrent Signal Assignment Statements. .

X1




Table

N o e

List of Tables

Page
Initial EAPs in a Hypothetical Component . . . ... ... ..... 67
Performance on a 60,000-Transistor Design . . . ... ... .. ... 7
Execution Times of Indexed Logic Extraction Rules for a 250,000 Tran-
sistor Design . . . ... ... .. . o o ool 78
Terms and Typesof entity/5. . . . . . ... ... ... ....... 114
Terms and Types of architecture/4 . . . . . . ... ... ... ... 115
Terms and Types of package/2 . .. ... ... ........... 117

Terms and Types of package body/2 . . . . .. ... ... .. ... 120

xii




AFIT/DS/ENG/92-1

Abstract

A Prolog-based system is described which employs logic-extraction to perform hardware-
verification. The extraction rules are built automatically from hierarchical structural VHDL models,
enabling the equivalence of a structural VHDL description and a layout specification to be verified.
Pin-to-pin critical-path analysis is performed within the logic-extraction process; many noncritical
paths are pruned early, making pin-to-pin critical path analysis of large circuits feasible. It is
demonstrated that a design methodology based on logic extraction, VHDL, and a layout tool can
provide a fabricated functionally-correct IC design without circuit-level or switch-level simulation.
This methodology is shown to be practical for VLSI designs up to 250,000 transistors in size. The
properties of correctness, completeness, and guaranteed termination are examined for the extraction

process.

xiii




HARDWARE-VERIFICATION THROUGH LOGIC EXTRACTION

I. Introduction

The Department of Defense has adopted VHDL! as a standard means of documenting digital
designs. A structural description in VHDL is an orderly top-down hierarchical decomposition
of a circuit into sub-structures; these are comprehensible, at every level, to the designer. The
ultimate product of design, however, is a transistor-layout, a file describing large numbers (up to
hundreds of thousands) of interconnected transistors. This file is used to manufacture the circuit in
silicon. To be certain that the design complies with its documentation, the designer must somehow
convince himself that the layout—representing a seemingly-formless mass of transistors and wires—
is a realization of its tidy VHDL description. To do so by inspection is beyond human capability.
Instead, the designer today must revert, in software, to the breadboard-testing of earlier days: he
checks his design by conducting an input-output experiment, applying a sequence of inputs to a
simulated transistor-layout and comparing the resulting outputs with those that would be produced

by the VHDL description.

Though greatly assisted by VHDL, stimulus-response experiments are inherently deficient
as a way to ensure the compliance of a design with its documentation. The number of required
test-inputs increases astronomically as the size of a circuit increases; moreover, memory-elements
(present in most circuits) vastly complicate the task of producing and interpreting a test-sequence.
Designers continue testing-by-simulation because no practical alternative has been available. The

work presented in this dissertation provides one alternative.

1'VHDL is an acronym for VHSIC Hardware Description Language and VHSIC is an acronym for Very High Speed
Integrated Circuit. VHSIC-class integrated circuits include designs larger than 100,000 transistors. VHDL is IEEE
Standard 1076-1987 (IEEE 87).




This research is based on the discovery that circuit-extraction, a well-known technique, may
be used for purposes which apparently have never before been contemplated. To “extract” a
circuit means to begin with a low-level description of its structure and to derive a higher-level
description. A typical extraction-system might accept a description of a circuit as an interconnection
of transistors and generate a description of the same circuit as an interconnection of components

such as registers, adders, and multiplexers.

An original objective was to develop an extraction-system that would accept a transistor-level
(or gate-level) description of a circuit and would generate a hierarchical description of the circuit
in VHDL. Such extraction has not, to our knowledge, been possible until now, and would be of
significant value to the digital-design community. It has turned out to be a relatively simple by-
product, however, of the system that has emerged. Called GES (Generalized Extraction System),

the system performs the following tasks:

1. Formal Hardware-Verification. GES verifies that a hardware design is fully compli-
ant with its hardware documentation. Supplied with a structural description in hierarchical
VHDL, GES first produces a custom extractor capable of extracting only the specified struc-
ture. GES then attempts an extraction. If the attempt succeeds, the design is verified to
be 100% compliant with the documentation. If the attempt fails, then the design may de-
viate from its documentation in some respect. In the latter case, GES provides diagnostic
information which enables the designer quickly to determine the nature and location of the

deviation.

2. Reverse-Engineering of Undocumented Designs. The DOD has a serious problem in
replacing parts whose functional documentation is either incomplete or non-existent. Given a
low-level description (at the transistor or gate level), GES will produce a functional description
of the circuit. GES also produces timing information and high-level VHDL documentation.

The “views” of the circuit that are produced may be tailored to individual requirements.



3. Detection and Location of Errors in Design. At different levels in the process of

extraction, design-rule checks are performed by GES to identify improperly configured com-

ponents.

4. Assistance in Incremental Documented Design. GES enables documentation and
layout to stay in step. At each stage of design, a circuit is guaranteed to comply with
its VHDL description; at no point is simulation necessary. The direct use of the VHDL
documentation to verify a layout not only encourages a designer to keep his documentation
current, it requires him to do so. Documentation is typically something conjured ez post
facto; using GES, however, the documentation becomes an essential part of the process of
design. If modifications to a circuit-layout are required, the designer using GES must modify
the VHDL documentation first. GES thus provides a useful stimulus to keep documentation

current.

5. Critical-Path Analysis. GES locates pin-to-pin critical paths in a layout. The requisite
timing calculations are based on distributed resistance and capacitance values derived from

the layout-description.

The process of formal hardware-verification presented in this paper combines two techniques.
The first technique, somewhat similar to that of (Papas 88), uses a rule-based logical extraction
process to prove 100% functional compliance between a structural hardware description and its
associated component nethst. For true verification of digital hardware, both the functional and
temporal aspect of the design must be examined. Thus, a second technique, involving list process-
ing, is used to extract pin-to-pin critical paths from the structural hardware description and its
associated component netlist. The critical paths of the hardware model and the component netlist
may be compared to ensure that the timing in the circuit meets the restrictions on delays specified

in the digital hardware description.




Computer Aided Design of Hardware

The process of CAD development of hardware involves several steps with various tools to aid in
the design process. Figure 1 is a diagram of the general flow of the design process as it has existed,
void of formal hardware-verification. This process begins with the development of a hardware

behavioral specification?

. Several iterations through simulation may be required to examine the
behavior and modify the behavioral specification until it matches the desired performance. Once
a behavioral specification has been established, some form of synthesis is employed to generate a
description of the structural specification. Synthesis in this context is performed by first deriving a
netlist from the behavioral specification then optimizing the derived netlist into its implementation
form. The synthesis may be performed manually or automatically. The structural specification
is a description of the actual hardware component to be realized. At this point, the behavioral
and structural specifications are simulated to generate test vectors for comparison. Notice that
the simulation of the behavioral specification performed at this point is in addition to the one

performed earlier for examining the behavioral specification. This process of ensuring conformance

is referred to as validation.

From the implementation specification, layout of the integrated circuit is performed, again,
through synthesis. As before, the synthesis may be either manual or automatic. From the gener-
ated layout-specification, a transistor netlist may be generated for use in a switch-level simulator
(Terma 80). The results produced by the switch-level simulator are then compared against the
results of the structural-specification simulation. Once the layout-specification is shown to conform
to the structural specification, it is transformed into a format that may be sent to a fabrication

service for production of the integrated circuit?.

Once the component has been fabricated it must be tested for fabrication flaws. A set of

test vectors is run on the integrated circuit. The test results are compared against the results of

2See Appendix A for a discussion of behavioral and structural specifications.
3For the purpose of this presentation, the CALTECH Intermediate Format (CIF) was chosen.




CBehavioral Specificat ion}—simulat ion

4

Synthesis Validation

A

CStructural Specificat ion)——Simulat ion

4

Synthesis Validation

1 \

< Layout Specification >———simu1ation

[

Fabrication Fault Analysis

Y A

( Integrated Circuit )—‘Test Bench

Figure 1. General CAD Development of Hardware.




simulating the structural specification. Should conformance exist between the integrated circuit

and the structural specification, the integrated circuit is assumed to be correct.

Figure 2 is a diagram of a general CAD environment that includes the use of formal hardware-
verification. With the use of formal hardware-verification, it is no longer necessary to simulate the
behavioral specification for the purpose of generating test vectors for the structural specification.
The simulation of the structural specification is necessary only for comparison against the final

fabricated component.

Problem

Using simulation to validate compliance between a structural specification and its layout
specification is no longer acceptable. Designs built today have increased in complexity well beyond
the designs built through breadboarding. Though simulation was sufficient for small 1,000-transistor
designs, designs are currently being constructed on the scale of 100,000 to 1,000,000 transistors. To

help understand the complexity of the problem, consider a 32-bit adder.

A hardware structure typically found on an ASIC today is a 32-bit adder. Such an adder may
be implemented in a number of different ways (Weste 85:310-331). Regardless of the implemen-
tation, for input there are 32 bits for one operand, 32 bits for a second operand, and a carry bit.
The total number of input-bits for a 32-bit adder is thus 65. For an exhaustive simulation? at least
36,893,488,147,419,103,232 test vectors would be required. If we assume that a simulator running
today could handle 1,000 test vectors per second, the system would complete the simulation within
1,169,884, 834 years; however, simulation to this extent would still not guarantee equivalence be-
tween the structural specification and the layout specification. All that is guaranteed is that both
the structural specification and the layout specification are equivalent for the given test-vector

sequence. Therefore, performing exhaustive simulation is ineffective, even for simple designs.

4The next chapter provides a case where exhaustive simulation for an assumed combinational circuit may not be
sufficient, requiring even more test vectors than shown here.



A A

4

Synthesis Verification

A A

4

Synthesis Verification

C

Layout Specification )

A

Fabrication

CBehavioral Specificat ion}—-ssimulat ion

(Structural Specificat ion}—»Sinulat ion

[

Fault Analysis

\

C Integrated Circuit )———Test Bench

Figure 2. General CAD Development Using Formal Hardware-Verification.




Solution

One way to overcome the deficiencies of simulation is through logic extraction. Logic extrac-
tion ensures that a layout-specification is equivalent to a structural specification. Further, the time
that it takes to verify the equivalence between a structural specification and a layout-specification
of designs like the 32-bit adder is several seconds of total CPU time. As a result of the research
reported here, a formal basis for logic extraction is presented, logic extraction of large VHSIC-class
chips is possible, and the modest CPU/memory requirements of logic extraction make verification
of 1,000,000-transistor designs a reality. Thus, the objective of this research is to establish a for-
mal definition of logic extraction, discuss properties of logic extraction as they relate to formal

hardware-verification, and demonstrate that logic extraction is practical for VHSIC-class designs.

Overview

GES is a collection of programs written in Prolog. Prolog is used as the vehicle for investigat-
ing and implementing logic extraction, since logic programming is directly implemented. A logic

program is a collection of rules, where a rule has the form,

A +~— Bi,...,B,

and n > 0 (Sterl 86:8-15). GES consists of several Prolog programs that perform the following

functions.

1. ges - the logic extraction system
2. sim2pro - a filter for translating a .sim transistor netlist to ges format
3. vhdl2ges - generates ges from a hierarchical VHDL structural description

4. flatten - flattens a hierarchical VHDL structural description to a netlist of its lowest-level

components




5. vhdl2ecpv - generates ges from VHDL for extracting critical paths in a netlist generated by

flatten
6. vhdl2ecpl - geucrates ges from VHDL for extracting critical paths from layout
7. ges2vhdl - generates VHDL structural description from an extracted component netlist

8. geng2v - generates a ges2vhdl tool from a collection of hierarchical VHDL structural descrip-

tions

This dissertation will focus on proving several properties about ges®. These properties are cor-
rectness, completeness, and termination. By demonstrating correctness, we show that any circuit
successfully extracted by ges is indeed the circuit that was intended to be built. By demonstrating
completeness, we would like to show that if a circuit was built according to its structural specifica-
tion, ges would succeed in extracting it; however, we will show that this is not always the case for
logic extraction. We will also show that logic extraction, through ges, is guaranteed to terminate.
Finally, we will show that pin-to-pin critical path analysis is possible within the context of logic

extraction.

SGES encompasses all of the Prolog programs enumerated here. ges is the Prolog program that performs the
logic extraction.




II. Validation, Synthesis, and Verification

Several approaches to ensuring the conformance of hardware implementations to hardware
specifications are reviewed in this chapter. These approaches are generally referred to as validation,
verification, and synthesis. We will show that validation is inadequate for today’s designs. We will
also show that the assertion of “correct by construction” made by designers of synthesis tools is not
true. All of these approaches are related to this work and help to place this work in perspective.
Berfore examining these different approaches, the generic design process presented in Figure 1 and

Figure 2 should be reviewed.

Validation Techniques

Validation is concerned with demonstrating the functionality of a given circuit for a selected
set of input stimuli and output responses. Stated another way, validation is used to demonstrate,
through a collection of results or test vectors, the compliance of one hardware description with
another hardware description. Simulation is also used as a name for the process of validation.
Exhaustive simulation is not feasible for any but the simplest of digital designs. If we consider
only a 32-bit register, there are over four billion possible output responses for any one given input

(Barro 84:438). The process of simulation is NP-complete and in some cases may not be exhaustive.

Problems with design validation are not limited to its intractability alone. Two basic types of
simulation, event-driven and switch-level, are also prone to complications due to the nature of the
simulation cycle. Switch-level simulators, for example, are generally used to perform simulation
of the mask layout description as a means of validation (Terma 86). This type of simulation
is based on a state model. As such, the simulation cycle is based on propagating logic values
through a circuit network until a steady state is reached. For combinational logic circuits, this
type of simulation model does not present any difficulty. For sequential circuitry and systems

with oscillating feedback loops, simulator problems are generated through nonconverging circuit

10




configurations. Certain other sequential circuits can also introduce race conditions that cannot
be handled. Circuits that have oscillators as part of their normal makeup never converge to a
steady state value once they are set to oscillate. Since the circuit never converges to a steady state,

simulation using switch-level simulators is not practical.

Using switch-level simulators to identify errors in a circuit may also prove difficult. Consider
the circuits shown in Figure 3(Bryan 87). Should the sequence of test vectors for (A,B) be chosen
as ((0,0), (0,1), (1,1), (1,0)), the result for (A,B,Out) would yield the sequence ((0,0,1), (0,1,0),
(1,1,0), (1,0,0)). The same sequence would be seen for both the correct NOR-gate implementation
and the flawed NOR-gate implementation. The capacitive storage on the flawed NOR-gate circuit
allows for a logical 0 on Out when (A,B) is set to (1,0). However, had the sequence for (A,B) been
chosen as ((0,0), (1,0), (1,1), (0,1)) the flaw would have been detected for (4,B,0Out) as (1,0,1).
This example demonstrates that flaws in a combinational circuit may not be found even when an

“exhaustive” sequence is used to simulate the circuit’s behavior.

8 8
o =

B—l A_| Ou B_-l Out

CORRECT FLAWED

Figure 3. Circuit Diagrams for a NOR-Gate and Flawed NOR-Gate.

Event-driven simulators are based on propagating signals using time-value pairs (IEEE 87).

This type of simulation allows for delay to be considered. Sequential circuits that oscillate, then, do

11




not cause undeterminable results. This type of simulation usually is performed on digital ciccuits

at the gate level.

Synthesis

The purpose of this section is to discuss problems of using automatic synthesis alone in the
hardware design process. Ideally, synthesis translates a register-transfer level (RTL) description
(structural specification) directly to a layout-specification. However, practical synthesis is a two-
step process involving translation from a RTL description to a component netlist followed by an
optimization step. The translation portion of synthesis maps a RTL description of a design in a
hardware description language! to a gate-level netlist (deGeu 89:27). Afterwards, optimization of
the gate-level netlist is performed. The optimization step may be based on an optimization process

using the Quine-McCluskey (McClu 56) method or usi .., a rule-based substitution process.

The first problem with synthesis concerns the completeness of the required design specifi-
cation. The behavior of the design musi be deseeibed eompletely in order for synthesis tools to
generate a hardware description. If we assume a specification that describes the output condition
when A=B=1 to be 1 and the output condition for A=B=0 to be 0 without further information,
synthesis cannot be performed. We may assume don’t care conditions for the other two situations;
however, this condition must be explicitly stated. The designer may be required to fully describe

a given design even when doing so may be highly inconvenient.

Synthesis is a highly complex process. To further complicate the problem, VHDL is composed
of many procedural and declarative language constructs. The complexity of synthesis a1 d the many
features of VHDL can contribute to generating inadvertant errors during the mapping to a gate-
level netlist, optimization, or the mapping to a layout specification (Devad 88:182). Tlerefore,

synthesis needs to be checked by a verification system to ensure conformance.

1VHDL is the standard hardware description language used for a RTL description.

12




Another problem with synthesis is the limited set of design solutions that are provided. Gen-
erally, a fixed generation-pattern from a RTL representation in VHDL to a gate-level netlist exists
for a given language construction. For example, a case statement in VHDL may be mapped di-
rectly to a series of multiplexers in hardware. Some synthesis tools provide the means to make space
versus area tradeoffs during optimization (deGeu 89:29). However, these solutions are equivalent
solutions. Other <olutions may exist that meet the criteria of the behavioral specification, but are
not equivalent. For the purpose of illustration, assume that a designer wishes to incorporate a full
adder into a design. Assume also that previously fabricated components exist, but with two full
adders on a chip. The chip with two full adders would suffice for the needs of the designer; how-
ever, the synthesis system would tell the designer to design a new component comprising one full
adder. This problem limits the designer to a confined solution space when investigating alternative

solutions might yield better designs.

The level where synthesis is performed is important. When an expert manually synthesizes
a structural specification from a behavioral specification, some mental rechecking of the behavioral
specification is performed. Flaws or poor assumptions made in the behavioral specification are
sometimes found while the expert is exploring the solution space of the structural specification.
Synthesis, however, doesn’t provide this opportunity to reflect on the original behavioral specifica-
tion. Thus, the flaws and poor assumptions in the behavioral specification are incorporated into

the final product.

Synthesis systems are generally based upon Boolean manipulation techniques. If the design
specification is not based on {0,1} then the Boolean manipulation techniques used in the synthesis
approach will not yield an implementation description that may be compared to the behavioral

specification. Assume that the behavioral specification for a given design is

out = (zyvzzVvysz). (1)

13




A synthesis system would perform optimization on Eq 1 yielding the following transformation.

(zyvezzVy'2) - (zyVy'z) (2)

Through synthesis, the expression on the left of Eq 2 may be seen to be equivalent to the expression
on the right. The unannounced assumption made by the synthesis system in this case is that the
above cxpression is true for a Boolean algebra. However, should we choose the case where the set of
possible values used is {0,X,1}? great difficulty arises in generating comparable simulation results

before and after synthesis.

Shown in Figure 4 is an uncomplemented distributive lattice3 4 and a collection of operator
tables defined for {0,X,1}. The uncomplemented distributive lattice and the collection of operator
tables are not the same and differ through the interpretation of complement. For a true complement

to exist, the following system of equations must be satisfied (Rudea 74:3-4) (Donne 68:101).

uAu = 0

uvu

A true complement does not exist for the operator tables since the system of equations cannot
be satisfied for u = X. Attempting to force a complement operation for {0,X,1} only succeeds in

generating problems in simulation. An example can be constructed to illustrate this problem.

For the previous transformation, Eq 1, assume z = z = 1 and y = X. The result for both

equations of the transformation would then be the following.

(zyvezvyz) = 1 (3)

2This set is from the current EIA modeling standards for VHDL (EIA 89). Such a set of values is used to perform
hazard analysis in CMOS circuits

3A value system described in this manner is not unusual and was first proposed by Lukasiewicz in 1920
(Resch 69:22).

4 A discussion on lattices may be found in (Donne 68). In particular, a Boolean algebra is a complemented
distributive lattice (Donne 68:55-59,224-249). The relation between a Boolean algebra and the postulates that
define a complemented distributive lattice are stated explicitly in (Rudea 74:4).

14




oljox1 (] [N
XjJx x 1 XjJoxx
1111 1 110X 1
X #
L
110
X|x
o1
0
Figure 4. Lattice and Operator Tables for {0,X,1}.
(zyvyz) = X (4)

Fqs 3 and 4 have different results leading the user to believe that the synthesis tool has failed.
However, the result of synthesis using consensus to absorb the zz term is valid for a Boolean Algebra.
This illustration demonstrates the problem of comparing results through simulating a synthesized

structural specification from a behavioral specification when a many-valued logic system is used.

Simulation using a many-valued logic system is not the only problem encountered when
synthesis is used in Eq 2. The designer may desire to have the zz term included. Without the zz
term, a spike might be induced into a circuit when transitioning from the zy term to the 3’z term.
Using synthesis in some situations may produce large combinational logic circuits with dangerous

transient responses to certain input stimuli.

Although there are problems with synthesis, its use is beneficial in some cases. In situations
where certain designs described by a hardware description language are easily synthesized, synthesis
can provide better hardware solutions than can humans. When working with large circuit designs,

humans can lose attention while optimizing a circuit. Synthesis tools, however, work as vigorously

15




to optimize the last portion of a circuit as they do the first part. Most synthesis tools also perform
some self-verification of the hardware they have generated, to help reduce the possibility of intro-
ducing errors. Synthesis requires reasonable human guidance and a verification system for proper

operation.

Verification Methods

As opposed to validation, verification is the process of proving compliance between one hard-
ware specification and another hardware specification. Verification methods are based on a sound
mathematical foundation. Methods for formal hardware-verification range from automautic
(Boyer 79) to manual (Gordo 89). The Boyer-Moore method performs most of its theorem proving
through induction, whereas HOL is open to theorem proving through many techniques. One of the
more common techniques of theorem proving in HOL is through rewriting of goals and dividing

goals into a conjunction of subgoals.

The capacity to perform formal hardware-verification is based upon the ability to express
hardware descriptions in a theorem form. Some formal hardware-verification systems require that
a description of the hardware be in a specification language. The specification language may either
be the language of the proof system or some hardware description language that can be translated

into the language of the proof system.

The relationships among the behavioral specification, structural specification, and layout

specification, are usually characterized as follows:

Structural Specification =  Behavioral Specification (5)

Structural Specification <<  Layout Specification (6)

16




Relation 6 is necessary to ensure that the actual hardware and documentation match explicitly.
Contrary to intuition3, Relation 5 expresses the logical requirement that the structural specification

is within the domain described by the behavioral specification.

The implicative relation between a behavioral specification and a structural specification can
be shown through several examples. For the first example, assume the domain of discourse to be the
set of integers. Considering a behavioral specification, 2 = 25, and two structural specifications,

z =5 and z = -5, we have

(z=5) = (z2=25)

(z=-5) = (z2=25).

The equation (structural specification) £ = 5 is a solution (implementation) of the equation (be-
havioral specification) z? = 25. In Appendix C is a digital-hardware example of the implicative

relation between several structural specifications and a behavioral specification.

Further information regarding formal hardware-verification techniques may be found in sev-
eral sources. An extensive survey of formal hardware-verification is in (Camur 88). Some of
the most commonly referenced methods include Higher-Order Logic (Gordo 89), Boyer-Moore
(Boyer 79), and TEMPURA (Moszk 86). A discussion on temporal logic approaches is presented in
(Galto 87). A tutorial for HOL has recently been published (Gordo 89). Furthermore, a theoretical
discussion of HOL may be found in (Gordo 88). A demonstration of how HOL is used in formal

hardware-verification may be found in Appendix C.

5Those initially exposed to simulation as a form of design validation tend to see this relation as
Behavioral Speci fication => Structural Specification. This bias is brought about by the thought that whatever
stimulus-response patterns result from the behavioral specification must also result from the structural specification.

17



Summary

The process of simulation is neither correct nor complete. A circuit may not match a design,
but simulation may lead the designer to believe the design is constructed in compliance with
its structural specification. Additionally, a circuit may comply with its structural specification,
but problems with the simulator paradigm may prevent demonstration of proper performance.
Despite these shortfalls, simulation is still necessary for generating test vectors for testing fabricated

components.

Synthesis is not always sufficient for guaranteeing correct designs and may produce unexpected
results. Thus, synthesis requires the use of formal hardware-verification to ensure the results of
synthesis are correct. In contrast to design validation, formal hardware-verification can verify a

design for all possible inputs and outputs in a tractable manner (Barro 84:438).

We have shown that a structural specification is a solution to a behavioral specification, but
not necessarily a unique one. Since a structural specification is a reflection of the actual hardware,
it must match the layout specification explicitly. Formal hardware-verification methods should be
used to show that the layout specification is equivalent to the structural specification. As a formal
method, logic extraction shows equivalence between the layout specification and the structural

specification.

18




III. Logic Extraction, VHDL, and Transistor Netlists

A Survey of Logic Extraction

Logic extraction has been attempted by several researchers prior to this research. Previously,
logic extraction was viewed as simply a matter of matching a few subcomponents to a template
and replacing them with a single component; however, problems were encountered with component
connectivity when using this simple approach. Additionally, the size of the circuit that could be

extracted was less than 10,000 transistors in size.

An informal description of logic extraction through GES is first presented. Afterwards, de-
scriptions of previous approaches are provided. As each approach is discussed, the inherent problems

with each approach are identified.

Logic Extraction through GES Three functions are performed in the extraction process
shown in Figure 5. These three functions are identifying the subcomponents that form the com-
ponent, checking that internal nodes do not have external connections, and checking for internal-
external connection inconsistencies. By extraction, the appropriate components and interconnec-
tions are identified. When the components are identified, additional checks are necessary to ensure
that different variable labels contain different values!. Checking that the internal connections of a
component do not connect with another component external to the component being extracted is
important. From Figure 5, the node named INTERN “disappears” from the overall circuit once
the D-latch is extracted. If the node named INTERN is connected to scme other component

external to the D-latch, connectivity information is lost.

Prolog vs. Forward-Chaining Expert Systems Rule-based methods implemented in
forward-chaining systems like OPS5 (Spick 85), OPS83, or CLIPS (Yaros 89) suffer from two prob-

lems. The first problem is inherent to the extraction process. The second problem is inherent to

'Within Prolog, different variable labels are allowed to contain the same value. However, when using different
variable labels for hardware design, different electrical connections are implied.

19




C1BAR
NTE

¢ = in4D T our

C1BAR
C1BAR

Figure 5. Logic Extraction.

forward-chaining systems. The types of forward-chaining systems that fall within the realm of this
discussion are shown in the pictorial representation of Figure 6. The forward-chaining system is
divided into parts. The first part consists of the rules. Each rule has a left-hand side, LHS, and a
right-hand side, RHS. The LHS is a set of conditions that must be met in order to carry out the
actions in the RHS. The working memory contains the facts and context of the forward-chaining
system. The context is a stack of all partially matched and fully matched rules. An iterative process
of matching, conflict resolution, and acting is carried out until there are no more fully matched rules
to act on. The conflict resolution portion of the iterative process determines which fully-matched

rule to act on.

Figure 7 is an example of what appears to be a NAND gate; however, an internal connection,
Int, to another component, COMP, suggests otherwise. Before extracting a component, its in-
ternal connections must be checked to ensure they are not connected to the external connections
of the component being extracted (“local” connectivity) and to ensure they are not connected to
another component (“global” connectivity). Once the component is recognized and extracted, the
internal node disappears, thus connectivity information is lost. Local connectivity is easy to check
within an extraction rule, since all of the connection information is available. Global connectivity

is more difficult to check. It is not readily apparent how rules in forward-chaining systems may

20




if conditions then perform actions

LHS — RHS

Process Working Memory
1. Match
2. Conflict Resolution OR halt
3. Act
4. Gotostep 1 Rules

Figure 6. Forward-Chaining System.

be constructed to solve the internal-global connectivity problem. Such rules for internal-global

connectivity checks are not addressed in (Spick 85) (Yaros 89).

A b- B COMP

Figure 7. Possible NAND Gate.

Secondly, forward-chaining systems are best-suited for heuristic solutions to problems of an
intractable or diffuse nature. The “working memory” of an expert system is one element where
impact on performance is observed. Working memory contains both the facts (in this case, a
transistor netlist) and the context of the system (a stack of fully matched and partially matched
rules). A large number of additions or deletions of facts can result in costly memory management
overhead. Stored within the context of working memory is a list of matched and partially matched

rules. Having several rules governing component configurations from transistors among a fact-base




of several thousand transistors can result in the context area of working memory exceeding the
capacity of the system. A CLIPS implementation of logic extraction (Yaros 89) developed along
the lines of an OPS5 implementation of logic extraction (Spick 85) demonstrated that a system of
several matching-rules (gate-types) and 2,000 transistor-facts exceeded 100 MegaBytes of available

memory during execution.

Aside from the large memory problems, it turns out that conflict resolution is of little im-
portance. The component netlist may be extracted simply by applying the rules sequentially. The
overhead involved in resolving conflicts between rules ready to fire is an unnecessary expense. Fur-
ther, the inability to directly control the rule-firing order makes the logic extraction process difficult

to fine-tune for efficiency in an expert system environment.

Prolog vs. Gth: + Languages Prolog was chosen as the implementation language over
procedural langvages and Lisp for several reasons. The logic extraction process involves searching
and pattern matching. Prolog is naturally suited to searching and pattern matching. Expressing
the lugic extraction process in Prolog allowed for rapid-prototyping of ideas. Seventy lines of Prolog
code, easily developed, implemented a portion of the extraction process being performed by a C-
code implementation of over 5,000 lines (Linde 88). Further, reliable Prolog implementations exist

today (Quint 88). Finally, there is an accepted standard for Prolog (Clock 87b).

Summary Work with logic extraction has been reported in (Spick 85) (Boehn 88). Other
work that performs comparisons of transistor networks to their original structural descriptions
(either an HDL or schematic) do so by graph-based methods (Ebeli 83) (Takas 88), rule-based
methods (Takas 88) (Papas 88), or other methods (Boehn 88) (Takas 88) (Spick 83). Though one
method does extract some timing information at the gate level (Boehn 88), none performs any
type of critical path analysis in conjunction with the extraction process. A report on critical path

analysis within the extraction process is in (Dukes 91a).

22




The Representation of Hardware Structure Through VHDL

VHDL Syntax This section details the VHDL language constructs accepted by vhdi2ges.
Several examples of acceptable structural VHDL models are provided. The VHDL language con-
structs are taken from the Syntax Summary of (Dukes 91b:5). At a minimum, the VHDL descrip-

tion must contain the following.

entity identifier is
formal port_clause
end entity_simple_name ;

architecture identifier of entity_name is
component identifier
localport_clause
end component;
begin
instantiation_label :
component name port.map.aspect ;
end architecturesimple_name ;

Below is an example of a VHDL description conforming to the above description.

entity comp is
port (A : in bit);
end comp;
architecture structure of comp is
component sub_comp
port (A : in bit);
end component;
begin
sub_comp00 : sub_comp port map (A);
end structure;

Additional VHDL language constructs supported are shown below.

signal identifierdist : subtype.indication;

alias identifier : subtype.indication is name;

All other VHDL language constructs are ignored.

23




Properties of Structural VHDL There are several properties and relations expressed by
a structural VHDL description. Those properties and relations concern the component-to-entity
relation, properties of signal names, and properties of aliases. Further, there are the restrictions
that at least one signal must be in the port and there must be at least one instantiated component

in the architecture body.

The relation between the entity and its respective components is a one-to-many relation. This
relation is shown in Figure 8. Importantly, this relation is bidirectional in that an entity may be
decomposed into a collection of components or a collection of components may make up an entity.
In the case of logic extraction, the emphasis is on finding a collection of components that make up

an entity.

Gy

E = entity. C = component instantiation.

Figure 8. Relation Between an Entity and Components.

The port of an entity lists the signals through which the entity communicates to exterior
components. The port forms a boundary, isolating the interior components. The signals declared
in the declarative area of the architecture imply “wires” through which the components of the

interior of the entity communicate. Some important distinctions between signals of the port and

24




signals of the architecture’s declarative area arise. For clarity of the discussion, we will use signals,

to denote signals of the port and signals, to denote signals of the architecture declarative area.

For the signals of signals, and signals,, we will informally describe a logical prop-
erty called not_connccted(signals,, signals,). We may also refer to the logical property
not_connected(signals,, signals,) as not_connected/22. The properties of not_connected/2

are as follows.

1. None of the signals of signals, may be a member of signals,.

2. Every signal of signals, is unique.

The two properties of not_connected/2 reflect the semantics of VHDL. The first property of
not_connected/2 enforces the requirement in VHDL that a signal may only be declared in the port
of the entity or in the architectural declarative part. The second property of not_connected/2
represents that fact that each signal declared in the architectural declarative part represents a
unique wire. However, the signals of the port map may be interconnected when the component is

instantiated at a higher level in a VHDL structural specification.

As for the visibility of the signals of signals,, a property find_anomaly(component, signals,)
will be defined. The property, find.anomaly(component, signals,), explicitly represents the fact
that none of the signals of signals, may be connected to components outside the entity under
consideration. In essence, find.anomaly{component, signals,) expresses the confinement of the
scope of the signals of signals, to the interior of the architecture of the entity under consideration.

Implicitly, the signals of signals, may be seen on the outside and inside of the entity.

Aliases in VHDL provide a basis for renaming signals of signals,. Any time an alias is

encountered, it is replaced with the appropriate signal of signals, or signals,.

2A Prolog program is identified by its functor and arity as functor/arity. The functor is the name of the Prolog
program and the arity is the number of parameters passed to the Prolog program.

25




Transistor Netlist Representation

GES does not extract components directly from a layout specification. GES performs logic
extraction on a transistor netlist derived from a layout specification. The transistor netlist may
be generated from a layout specification from one of several CAD tools that already exist for
this purpose. This section describes the input format for a transistor netlist. Also presented is a
mapping from a transistor-netlist format produced by a CAD tool to the transistor-netlist format

used for logic extraction.

Generating Transistor Netlists from Magic One form for a transistor netlist is that
described in (Terma 86). This form was chosen since it was derived from the mask layout form of
magic used in (Calif 86). One process of generating the transistor netlist begins in magic by using
the :cif command. The :cif command in magic produces a mask layout file in CIF3. Afterwards,
meztra reads in the CIF file and produces a transistor netlist file. The record format for a transistor

is

type gate source drain length width xpos ypos

where type is one of e, p, or n for enhancement mode transistor, p-type transistor, or n-type
transistor, respectively. The second through fourth fields, gate, source, and drain, describe three
of the four terminals of the MOS transistor used. The bulk (or substrate) is assumed to be biased
correctly and is not included. The fifth and sixth fields, length and width, describe the channel
length and channel width of the MOS transistor. The seventh and eighth fields, xpos and ypos,

are the location coo~dinates of the transistor.

An alternate route for extracting a transistor netlist from a magic layout also exists. The

:extract command in magic creates a hierarchical form of the layout, in .ext format, currently

3CALTECH Intermediate Format (CIF) is one layout format used. Another common layout format is GDS I1.

26




residing in magic. A series of extraction files is created that reflects the cell hierarchy used in magic.

A tool called ezt2sim is then used to generate the transistor netlist form.

Converting Transistor Netlists to Prolog Clause Form If the meztra tool is used on
a CIF file, the transistor netlist will be created with the n-type and p-type transistors described
as e and p for their types, respectively. If the ezt2sim tool is used, the transistor netlist will be
created with n-type and p-type transistors described as n and p for their types, respectively. Thus,

a transistor generated from meztra as

e a_XNOR_c#17 1520 GND 300 1200 706200 -20550

would appear in Prolog clause form as

n(nA_XNOR_C17,n1520, ngnd, 30., 1200, 706200, —20550).

A transistor generated from ert2sim as
P 20/4_1/A_in_nand Vdd 20/4_1/probe 300 1200 12172 101

would appear in Prolog clause form as

p(n204_1AIN_NAN D, nvdd, n204. PROBE,300,1200,12172, 101).

The general transistor netlist format in Prolog is shown below.

typep(gatep, sourcep, drainp, zpos, ypos).

The following mappings are used:

type +— typep

27




n —
—
gate +— galep
node — nNODE
Vdd +— nvdd
GND +~ ngnd
Gnd ~— ngnd
source +— sourcep
node + nNODE
Vdd — nvdd
GND +— ngnd
Gnd +— ngnd
drain +— drainp
node +— nNODE
Vdd — nvdd
GND +— ngnd
Gnd +— ngnd
where
node ::= letter_number_specialcharacter{letter_number_specialcharacter}
letter_number_specialcharacter ::= letter | number | specialcharacter
letter ::= upper_case_letter | lower_case_letter
and
nNODE ::= n{[underline]upper_case_letter_number}
upper_case_letter_number ::= upper_case_letter | number

The set specialcharacter = {@,#,%,%,(,)./,[.],,”,‘} is not necessarily a complete one since

magic allows labels to consist of a large number of different special symbols. The process node —

28




nNODE drops specialcharacter and translates lower_case_letter to upper_case_letter. The
mapping to upper case letters is necessary to overcome the case sensitivity of magic and Prolog

when generating case-insensitive VHDL code.

29




IV. A Formal Approach to Logic Extraction

The extraction process is a method of proving and determining the existence of higher level
constructs from existing lower-level ones. By seeing a relation between component definitions and
extraction rules, we may demonstrate that the extraction process is a form of hardware-verification.
In fact, the highest level Prolog rule may also be the final goal to be achieved in an extraction process

whereby only one component is left over after the entire extraction process has run its course.

Past attempts at logic extraction have failed in their expression of the essence of logic extrac-
tion. Ensuring that certain properties (i.e., protecting local and global connectivity!) exist has not
not been addressed. Had a formal approach to logic extraction been previously attempted, these

properties may have been discovered.

A formal definition of logic extraction will be presented in terms of logic-programming. Af-
terwards, the important properties of a component’s description as they relate to VHDL will be
proved. Finally, properties concerning correctness, completeness, and guaranteed termination will

be presented.

Defining Lists

As a matter of convenience, a logic-programming representation in Prolog is used to describe
the logic extraction system. Using Prolog is proper for describing formal methods and executing
them (Wing 90b:15). Therefore, developing a unique syntax and semantics for the logic extrac-
tion system is unnecessary. The structures that are used are assumed to be finite. The various

components to be used for logic extraction will be described first.

A property called not.connected(signals,, signals.) was stated previously in Chapter 3. Re-

iterating the definition for this property we have,

I'The discussion on local and global connectivity is in Chapter 3.

30




not_connected(signals,, signals,) < None of the signals of signals, may be a
member of signals,. Every signal of signals, is unique.

Prior to presenting a Prolog definition for not_connected/2 the representation for signals, and

signals. should be described.

Previously, signals, was described as the signals of the port and signals, was described as
the signals of the architecture. To make signals, and signals, useful to Prolog, we will choose a
list representation for both. Furthermore, each signal of signals, and signals. will be a Prolog

atom?. In Prolog, not_connected/2 may be expressed as

not_connected( [Signal |Reset0fSignalsAl,SignalsE) :-

not_member(Signal,Reset0fSignalsA),

not_member(Signal,SignalsE),

not_connected(Reset0fSignalsA,SignalsE).
not_connected([],_).

On the surface, it appears that not_connected/2 is satisfactory; however, an additional

stipulation exists requiring that each signal of signals, and signals, be a Prolog atom. The Prolog
program not_connected/2 does not guarantee anything is done to protect this original stipulation.

This being the case, there is no guarantee that not_connected/2 will do what it is intended to

do.

At this point, there are some desired properties of a Prolog program, P, that should be
determinable. These properties include correctness and completeness with respect to the in-
tended meaning, M. The meaning of P, M(P), “is the set of ground unit goals deducible from
P” (Sterl 86:15,82-83). Thus, P is correct if M(P) C M. Further, P is complete if M C M(P).

Finally, P is correct and complete if M = M(P).

Correctness and completeness are not the only properties of P that are of interest. We also

wish to be able to determine whether P terminatcs. For this property, a {ermination domain

2A signal in VHDL has a name that corresponds to the meaning of atom in Prolog. The only difference is that
Prolog is case-sensitive; whereas, VHDL is case-insensitive.

31




of P must be defined. “A termination domain of a program P is a domain D such that every
computation of P on every goal in D terminates.” (Sterl 86:83) Further, a “domain is a set of
goals, not necessarily ground, closed under the instance relation.” (Sterl 86:83) Finally, “A is an

instance of B if there is a substitution 8 such that A = B6.” (Sterl 86:5)

As an illustration to what is meant by a termination domain D, consider the Prolog program

for list /1.

list((]).
list([HIT)) :- 1list(T).

The termination domain for list/1 is represented by Dj;,;. We would like the termination domain
Diise to include the goal 1ist(X). Having 1ist (X) in Dy,; would mean that every instantiation of

X would be in Dy;,e; however, the goal
?- list(X).

results in an infinite number of solutions.

In order to impiement list/1, some restriction on D»;,; must be adopted. This has the effect
of rendering the program list/1 fragile. Tail-recursive programs that have the same form of list /1

require special handling. Consider the following “general” structure for a Prolog program similar

to list/1

C(..pl, N ,_Po, [ ])
(P, ..., P, [Head|Tail]) :-
goaly,

goal,,,

c(SubPy, ..., SubP,, Tail).

32




where o is the number of parameters passed to the program and m is the number of goals in the
clause body of the program. A goal goal; may be defined to restrict the form [Head|Tail] may

take so as to guarantee a larger termination domain.

A restriction on the structure of the list is added to list /1 to ensure termination over a larger
D. For this purpose we will define a meaning Maiom_tist, atom_list/1, as a definition for the list

structure to be used.

atom_list(List) < Either List is empty or each element of List is an atom.

In Prolog, the program Pgaiom_iist appears as

atom_list([]).

atom_list([Head|Tail]) :-
atom(Head),
atom_list(Tail).

The Prolog program Pgqom_tist makes use of the built-in Prolog function atom /1. Anything meeting
the requirements of atom list /1 will either be the empty list [] or a list whose elements are atoms,
and every list comprising only of atoms will meet the requirements of atom list/1. Further,
atom_list /1 will terminate for anything supplied to it as a proper Prolog parameter under the

assumption that finite structures are used.

A list conforming to atom_list /1 will either be [] or be in the form [e,,eq_1,...,€;] where
each e;, 1 < i < n, is an atom. For the case of atom_list([]), we find that the Prolog program
Patom_iist 18 consistent because it is satisfied by [1. For the case of [e,eq-1,...,€1] where each
ei, 1 <i < n,is an atom we have the following. If we assert the goal, atom_list([en,en_1,...,€1]),
we find the first clause is not satisfiable. However, the second clause is satisfiable. Performing an

expansion on the second clause of atom_list/1

33




atom_list([en|[en-1,...,e1]]) =-

atom(ey,),

atom list([en_1,...,e1]).
Assuming atom_list([en_y,...,€1]) true and knowing that atom(e,) is also true we can see that
through induction, atom_list([en,en_1,...,€1]) is accepted by Paiom_tist. Therefore, Matom_tist C

M(pa!w.u_list)~

To show that Pgrom_tise is cotrect, first consider the base case of atom.list([]). This is
acceptable to Parom_tist. Assuming that atom_list(X) is asserted, through unification the result
is still only atom list([]). Nothing else is acceptable to the first clause of atom_list/1. Assume
now that for [en,en—_1,...,€,] some e; is not an atom and that atom list([en_1, ..., e1]) succeeds.
This would mean that atom(e;) is true which would be a contradiction. Thus, M(Pstom_ist) C

M arom_ist showing that the program Parom_tist is correct and complete.

By adding atom/1 to form Pgiom_tist We have increased the previous termination domain
Diist. The termination domain Dgeom_tise May now include any acceptable Prolog structure. In
order to show that the program Pgiom_sist terminates for Datom_tist We first consider an empty
list [J. In the case of the empty list, the first clause of atom_list/1 is satisfied. Attempting to
satisfy the second clause results in failure and terminates the execution of atom_list/1. In the
case of an acceptable list of size greater than an empty we have [e,,en_1,...,€1]. The second
clause of atom_list /1 is tail recursive on a list that decreases in size of one with each invocation of
atom_list /1. The head starts with a list n elements long. It then invokes itself with a list of size

n — 1 until the empty list, [] is left which is terminated through the first clause of atom_list /1.

For some list failing to conform to atom_list/1, the case of a list [e,,€n_1,. .., €1] is consid-
ered where some ¢; is not an atom. This case may occur where e; is a variable, list, or compound
structure. For ¢;, atomlist/1 would fail at its (n — 1) + 1 invocation. Since no other clauses of
atom_list exist that might accept e;, the n — i invocation fails. All invocations up to the n — i

invocation also fail and terminate.

34




The program P,iom_tist can be used as a type-checking routine to guarantee conformance of a
list to the structure defined by atom list /1. This guarantee is very important in that all programs
whose termination domain is restricted to those structures defined by atom.ist/1 may be used
after atom_list/1 with the guarantee that the structure used is within their termination domain.

Prolog programs, P., of the form,

C(_Pl, .. .,_Po, [ ])

c(Py,..., P, [Head|Tail]) :-
goaly,
go;llm,

c(SubPy, ..., SubP,, Tail).

fall into this category provided goaly,. .., goal,, can be guaranteed to terminate.

The original Prolog program for not_connected/2 can be rewritten to use atom list/1.

not_connected(SignalsA,Signalskg) :-
atom_list(SignalsA),
atom_list(SignalsE),
not_connected_sub(SignalsA,SignalsE).

not_connected_sub([],_).

not_connected_sub([Signal|SignalsA),SignalsE) :-
not_member(Signal,SignalsA),
not_member(Signal,SignalskE),
not_connected_sub(SignalsA,SignalsE).

The program atom_list/1 is used as a type-checking mechanism to ensure that parameters passed
to not_connected/2 are in an acceptable form. Without atom list/1, not_connected/2 would
have to have its termination domain restricted. The Prolog program not_connected_sub/2 is of
the form described by the program P.. The termination domain Dpot_connected_sub iS guaranteed

by atom.list/1, therefore, we can be assured that it will terminate provided not_member/2

terminates. All that is left is to define not_member(Signal, SignalList).

The property, not.member(Signal, SignalList), may be defined in the following manner.

35




not_member(Signal, SignalList) < Signal is not a member of SignalList.

The foilowing is a Prolog definition for not_member(Signal, SignalList).

not_member(_,[]).
not_member (Node, [Head|Taill) :-
Node \== Head,
not_member (Node,Tail).

The Prolog program not_connected.sub/2 falls within the form of P.. When used within
not_connected_sub/2 its termination domain is also restricted by atom_list/1. The Prolog pro-

gram not_member/2 can be shown to be correct and complete in the same manner as atom_list /1.

Finally, to ensure that each component of a logic extraction rule is unique, the location
information from the layout specification is used. The location information is usually in cartesian
coordinates in magic and will be assumed so. Further, the coordinates will be integers. A collection

of logic programs to ensure uniqueness is shown below.

coordinate_list([]).

coordinate_list([[X,Y] |RestOfCoordinates]) :-
integer(X),
integer(Y),
coordinate_list(RestOfCoordinates).

unique_component([]).
unique_component ([[X,Y]|Tail]) :-

not_member([X,Y],Tail),
unique_component (Tail).

The logic program coordinate list/1 is constructed in the same fashion as atomJist/1. The
logic program coordinate list /1 provides a type-checking mechanism for unique.component/1
thereby ensuring termination. The logic program not.member also provides additional service

without changing its meaning.

36




Template for Logic Extraction

In this section, the general template for defining a logic extraction rule is presented. In
keeping with the description of a structural VHDL description given earlier, the logic extraction
rule will ensure the outlined properties are kept. However, the procedural aspects of Prolog must
also be considered so that extraction may be performed in an automated fashion. Accordingly, six

procedural steps are performed in the order indicated.

1. Identify the component from its lower-level components.
2. Ensure that the identified lower-level components are unique.

3. Check that the values of internal nodes do not match other nodes.

£

. Delete the lower-level components from the component netlist.
5. Add the newly found component to the component netlist.

6. Check to see if there are more lower-level components.

Step 1 must occur first, step two must occur second, step three must occur third, and step 6 must

occur last; however, the order of steps 4 and 5 is not important.

The general template for forming a Prolog extraction rule is:

37




head :-
matching_goaly,

matching_goal,,

coordinate list([[ X1, Y1], . . ., [Xa, Yall),
unique_component([[X1, Y1],...,[Xn, Yal]),
not_connected(Signals,, Signals,),
retract_goaly,

retract_goaly,
find_anomaly list(head(argument_list},Signals,),
asserta( head(argument_list)),
fail.
head.
Each of the coordinates used by coordinate_list/1 and unique_component/1 are derived from

each of the matching_goal;, where 1 < i < n. A discussion of find_anomaly _list/2 is provided

later in this chapter.

Currently, the logic extraction process is divided into two parts. The first part, called Level-1,
is a collection of rules for translating transistors of a particular technology to logical components.
The second part, called Level-N, is automatically generated (Dukes 91b) from VHDL descriptions
using vhdl_parser (Reint 90) to translate VHDL descriptions into Prolog logic extraction rules. A
Level-1 rule-set for C MOS and a Level-1 rule-set for the Vitesse GaAs process have been developed.
The Level-1 rule-set for the Vitesse GaAs process has not been extensively tested. The CMOS
Level-1 rule-set contains rules for extracting inverters, transmission gates, clocked inverters, N-
input NAND gates, N-input NOR gates, and three types of EXCLUSIVE-OR/EXCLUSIVE-NOR gates.

An additional rule for D-latches is also included.

Definitions for Using CMOS Level-1 Rules

The level-1 rules have to be generated by hand, though it is possible (but not desirable)

to use vhdi2ges (Dukes 91b) to generate level-1 rules from a structural VHDL description using

38




transistor-type components. Since the drain and source of a CMOS transistor are interchangeable
in their abstract view, some additional definitions are adopted to accommodate the abstract view.
In this section, an explanation and examples of how Prolog handles abstraction are presented. For

the representation of transistor-facts, we adopt the following definitic..s.

Definition 1 p(G,D,S,W, L, X,Y) is a predicate that describes a p-type MOS transistor with a
gate G, drain D, source S, channel width W, channel length L, x-location X, and y-location Y.

Definition 2 n(G,D,S,W, L, X,Y) is a predicate that describes an n-type MOS transistor with
a gate G, drain D, source S, channel width W, channel length L, x-location X, and y-location Y.

The arity (number of arguments) of seven for both the p and n predicates assumes that the phys-
ical bulk (or substrate) connection of the MOS transistor is biased correctly. Furthermore, the
description adopted is for p-type and n-type enhancement mode MOS transistors. Typical p-type

and n-type MOS transistors in Prolog appear as

p(nINPUT,nvdd,nOUTPUT,3,6,1254,387).
p(nADDIN,nA_INPUT,nA_SELECT,3,6,39887,-3091).
n(nINPUT,ngnd,nOUTPUT,3,6,1260,387).

In the physical sense, the actual drain and source are determined by the biasing of the
device. In the abstract sense (i.e., magic and eztract), the drain and source are freely interchanged.
[inplementations of the p-type and n-type transistors in MOS layout freely interchange the drain and

source (Weste 85). In order to express this abstract aspect and to suppress information concerning

length and width, some further definitions are adopted.

Definition 3 The predicate ‘ptrans’ is defined in terms of the predicate ‘p’ by the implication

VG, D.S, XY [(p(G.D.S..._.X,Y)Vp(G,S D._,_,X,Y)) = ptrans(G, D, S, X, Y)].

Decfinition 4 The predicate ‘ntrans’ is defined in terms of the predicate ‘n’ by the implication

YG.D, S, XY [(n(G,D,S,.,..X,Y)Vvn(G,5 D, ., X,Y)) = ntrans(G, D, S, X, Y)].

The underscore indicates unnecessary information. The Prolog rules to describe Definitions 3 and

4 are

39




ptrans(G,D,S,X,Y) :
p(G,D,S,_,_,X,Y).
ptrans(G,D,S,X,Y) :
p(G,s,D,_,_,X,Y).

ntrans(G,D,S,X,Y) :
n(G,D,S,_,_,X,Y).
ntrans(G,D,S,X,Y) :
n(G,s,D,_,_,X,Y).

Assuming that ptrans/5 and ntrans/5 exist in a file called trans.pro on a UNIX system
and that Quintus Prolog is also installed on the same system, ptrans/5 and ntrans/5 may be

loaded into Prolog in the following manner.

% prolog
Quintus Prolog Release 2.2 (Sun-3, Unix 3.2)
Copyright (C) 1987, Quintus Computer Systems, Inc. All rights reserved.
1310 Villa Street, Mountain View, California (415) 965-7700
| 7- compile([’trans.pro’l).
[compiling /people/dukes/class/trans.pro...]
[trans.pro compiled 0.267 sec 564 bytes]
yes
I ?-
The system prompt is 4. The Prolog prompt is | ?- . The file, trans.pro, was lo~ded into

Prolog using the Quintus Prolog procedure called compile/1. The Prolog function, compile/1,

compiles the contents of the file, trans.pro, into the current Prolog session.

Assume the following transistor netlist exists in a UNIX file called intrans.pro.

p(nINPUT,nvdd ,nOUTPUT,3,6,1254,387).
p(nADDIN,nA_INPUT,nA_SELECT,3,6,39887,-3091).
n(nINPUT,ngnd,nOUTPUT,3,6,1260,387).

The transistor information would be read into Prolog in the following manner.

40




! 72- D’intrans.pro’].
{consulting /people/dukes/class/intrans.pro...]
[intrans.pro consulted 0.100 sec 564 bytes]

yes
| 7-
All of tlie p-type transistors may be listed by querying Prolog in the following manner.
| ?7- p(G,D,s,¥W,L,X,Y).
= nINPUT,

= nvdd,
= nOUTPUT,

<X DD xXXxwnoao
il
w

= nADDIN,

= nA_INPUT,
= nA_SELECT,
3,

=6,

= 39887,

= -3091 ;

<X rrEZWnoUao
n

no
| 7- halt.

[ End of Prolog execution ]

%

The upper case letters, G, D, S, W, L, X, and Y, designate variables to be satisfied by Prolog. The
; (semicolon) is used to request further information from the transistor database that satisfies the
request. Otherwise, a carriage return not preceded by a ; would have terminated the search. The

halt/0 predicate tells Prolog to terminate and return to the system prompt.

Assume now that the transistor netlist consists of the following components.

p(nINPUT,nvdd,nOUTPUT,3,6,1254,387).
p(nINSTATE,nNOTINSTATE,nvdd,3,6,1254,387).
p(nADDIN,nA_INPUT,nA_SELECT,3,6,39887,-3091).
n(nINPUT,ngnd,nOUTPUT,3,6,1260,387).

41




Assume also that we are interested in finding transistors with nvdd on either the drain or source
of a p-type transistor. The objective may be accomplished in one of two ways. The first method is

to express two queries to Prolog using

| - p(G,nvdd,S,¥,L,X,Y) ; p(G,D,nvdd,¥,L,X,Y).

In the above example, the ; is used to logically OR the two queries. The result of the two queries

is displayed below.

% prolog

Quintus Prolog Release 2.4 (VAX, Ultrix 2.0-2.2)
Copyright (C) 1988, Quintus Computer Systems, Inc. All rights reserved.
1310 Villa Street, Mountain View, California (415) 965-7700

| 7- [’intrans.pro’].
[consulting /people/dukes/class/intrans.pro...]
[intrans.pro consulted 0.167 sec 880 bytes]

yes
| ?- p(G,nvdd,S,W¥,L,X,Y) ; p(G,D,nvdd,W,L,X,Y).

= nINPUT,
= nQUTPUT,
= 3,

6,

= 1254,

= 387,

= _149 ;

O 0@
H

= nINSTATE,

= _B5,

= 3,

6,

= 1254,

= 387,

= nROTINSTATE ;

O "o
"

| 7=

42




However, the Prolog rules stated in ptrans/5 will accomplish the same task, as shown in the

following:

% prolog

Quintus Prolog Release 2.2 (Sun-3, Unix 3.2)
Copyright (C) 1987, Quintus Computer Systems, Inc. All rights reserved.
1310 Villa Street, Mountain View, California (415) 965-7700

| 7- compile([’trans.pro’]).
[compiling /people/dukes/class/trans.pro...]
[trans.pro compiled 0.250 sec 564 bytes]

yes
| - [’intrans.pro’].

[consulting /people/dukes/class/intrans.pro...]
[intrans.pro consulted 0.100 sec 688 bytes]

yes
| 7~ ptrans(G,nvdd,S,X,Y).

G = input,

S = output,

X = 12564,

Y = 387 ;

G = instate,

S = notinstate,
X = 1254,

Y = 387 ;

no

P 7=

This example demonstrates that rules using transistors may not be concerned with the interchange-
ability of the drain and source. Assuming that circuit function, not timing, is of primary interest,
unnecessary information (e.g., gate width and length) may be easily dropped when performing

extraction.

Guaranteeing Termination for Logic Extraction

For the purpose of this discussion, the following representation will be used.

43




e LE(Case) will represent the Case under consideration for logic extraction.

® Pierminate Will represent the property of termination being true.

Further, there are only a finite number of facts in the facts data base.

Several cases will be considered. In all cases, m and n will represent natural numbers excluding
zero. The first case addresses the possibility of replacement of m components by n where m < n.
The second case addresses the replacement of m components by n components where m = n.
Finally, the last case addresses the replacement of m components by n components where m > n.
For the discussion of logic extraction, not_connected/2 and find_anomaly/2 are assumed to

terminate.

Case 1. The first case to discuss deals with the replacement of m components by n compo-

nents where m < n. What we want to show is that

LE(m < n) = Pierminate.

Logic extraction rules constructed through GES only assert a single component. Thus, n = 1;
however, n > m by our original assumption and m > 1 meaning that n can never be 1. Therefore,

LE(m < n) is false and the assertion for case 1 is trivially proven.

Case 2. The second case to discuss concerns the replacement of m components by n com-

ponents where m = n or

LE(m = Tl) = Pierminate-

There are two subcases to be proven. These cases are®

((m > l) A (n > 1)) + LE(m = n) = Pterminate

3A discussion on the form I' + « is in Appendix E.

44




and

((m=1)A(n=1))F LE(m = n) = Pierminate-

Rewriting the first subcase, we have

(m>DAMm>1)EF((m>1)A(n>1))=> (LE(m =n) = Pirminate)-

From Case 1 we know that n has to be 1. Therefore, (n > 1) is false and this subcase is true.

For the second subcase of

((m =1)A (n = 1)) F LE(m = n) = Pierminate

the value for m is valid as well as n. Thus, the extraction rule must be examined. The following is
a representation of a logic extraction for the case where the component being matched is the same

as the component being asserted on the component data base.

-
C(Pl, ey Po),
not_connected([ ],[Py,..., PJ]),
retract(c(Pr, ..., P,)),
find.anomaly list(c(Py, . .., Po),[]),
asserta(c( Py, ..., P,)),
fail.

Both not_connected /2 and find_anomaly list /2 terminate immediately due to [J. The remain-

der requires an understanding of fact matching and asserta/1.

In Prolog. matching of facts starts at the head of a facts data base. Upon each retry, the
succeeding fact is locked up. Prolog does not return to a preceding fact. In this fashion, a data base
of facts has a head, a tail, and a progression from head to tail. The Prolog procedure asserta/1

places a fact before the head of a fact data base. By modifying the facts data base in this fashion,

45




a newly asserted fact will not cause infinite backtracking through the facts data base since it is
considered a preceding fact. Furthermore, the facts data base is assumed to be finite. Therefore,

by using asserta/1 we are guaranteed termination.

For the case where the matching goal and the fact being asserted are not the same, the process
is trivial. Each time a goal is matched, a new component of a different name is asserted. This

process continues until all facts are retracted. The rule then terminates.

Case 3. The last case.to discuss concerns the replacement of m components by n components
where m > n or

LE(m > Tl) = Pierminate-

~

From case 1, we know that n must be 1. Since m > 1 by substitution, we see that the number ¢
components is decreasing rather than ever increasing. At worst, the logic extraction process will

continue until only one component is left.

Design Rule Checking

The extraction methodology previously described has only been concerned with extracting
normal circuits. However, we cannot assume that the circuit to be extracted is free from design
errors. Since errors may exist in a design, we must be prepared to find them. These errors occur
because the external interconnections of a component are configured in an inconsistent condition.

In this section, the problem of identifying these errors will be discussed.

Identifying External Design Errors The CMOS designs described earlier were based on
a design style of a particular designer or group of designers. Just as CMOS designs are based on
a design style, so too are design errors. A few of the types of design errors possible are shown in
Figure 9. It is important to point out that the following circuits are considered to be errors because

they are not normally used in the design of a VLSI circuit.

46




vdd vdd vdd vdd vdd

out drain drain
i i
Znd and gnd out Znd source Znd source
(a) (b) (c) (d) (e) (6]

Figure 9. Some Transistor-Level Design Errors.

Subfigures a and b of Figure 9 typify a dangerous circuit. This type of design error may
result from one of several actions on the part of the layout system used. If plowing or some other
form of circuit rearrangement is being performed, it is possible to connect the terminals of the
transistor in the fashion shown. During layout in magic, routing over subcells with metal layers
that accidentally contact the same layer of lower subcells may also cause this problem. In either

case, the result is a circuit that, when turned on, will cause a short-circuit between Vdd and GND.

The physical nature of such a circuit is not the only concern in Subfigures a and b of Figure 9.

Assuming for discussion that we were only concerned with showing

Implementation => Specification

the result of Subfigures a and b could lead to an invalid conclusion. Essentially, the resulting

equation from such an error might be

FALSE = Specification.

The specific problem of connecting Vdd and GND at the transistor level in HOL has been raised by

{(Gupta 91:20). The problem is generally referred to as “false implies everything” (Camil 86:22). A




false antecedent can lead the naive verification method to conclude an implementation meets a spec-
ification. Therefore, checking for such errors can reduce occurrences where improper conclusions

about hardware might be reached.

The circuits in subfigures ¢ and d of Figure 9 are a little less destructive than the circuits
discussed earlier. However, they may indicate design errors. These circuits may be easily replaced
by a metal line connected to Vdd for subfigure ¢ or GND for subfigure d. Even though these circuits
may be caused by the problems indicated for subfigures a and b, they may also be the result of
tying inputs to arrays of standard cells high or low. Subfigures e and f of Figure 9 demonstrate
another possible design error. As with the circuits in subfigures ¢ and d, their creation may be

accidental or incidental. The following “error” definition is offered.

Definition E1 VIn, Out, Drain, Source,

1. ptrans(In,vdd,gnd) is 2n error;
ntrans(In,vdd,gnd) is an error;
ptrans(gnd,vdd,Out) is an error;
ntrans(vdd,Out,gnd) is an error;

ptrans(vdd,Drain,Source) is an error;

e

ntrans(gnd,Drain,Source) is an error.

Recognition of design flaws is not limited to single transistors. Erroneous designs consisting
of groups of transistors may also occur. Figures 10 provides examples of designs that may be

considered design errors. For these structures, another “error” definition may be considered.

Definition E2 VPg, Ng, In Qut,

1. invZ(Pg,Pg.In,Out) is an error;
invZ(Pg,Ng,InIn) is an error;

tgate(Pg,Pg,In,Out) is an error;
4. tgate(Pg.Ng.InIn) is an error;

i

inv(In.In) is an error.

48




Pg

Pg Pg
In -D p-Out In Out In III Inm
(a) (b) (c) (d) (o)

Figure 10. Some Gate-Level Design Errors.

The list of errors included in Definitions E1 and E2 is not complete. For some designs, some of
the enumerated errors may not be errors at all. Therefore, definitions for design errors are declared

within the domain of the design style under consideration.

Prolog Implementation for Identifying External Design Errors This section de-
scribes two methods for using Prolog to identify design errors. The first method described is an
interactive one where the user provides statements to be satisfied by Prolog from the component
database. The second method described allows the user to specify a list of Prolog rules that may

be stored in a file and executed at a later time.

Definitions E1 and E2 designate certain component configurations to be erroneous. Using
Prolog interactively, these errors may be identified easily. The following is a demonstration of how

the component database is examined for the occurrence of the first type of error in Definition E1.

49




| 7~ ptrans(In,nvdd,ngnd,X,Y).
In = n20_024_14A_BAR,

X = 722,
Y = 141 ;
In = n20_024_13A_BAR,
X = 5722,
Y = 508 ;
In = n20_024_12A_BAR,
X = 5722,
Y = 798 ;
In = n20_024_11A_BAR,
X = 5722,
Y = 1017

Notice the use of the two additional fields, X and Y. These fields contain location information that
may be used to find the errant components. Through the use of Definition 3, we were able to ask
Prolog to identify those transistors that satisfied one of the design error types in Definition E1. We

may also perform the same query for higher level components as shown below.

| 7- tgate(Pg,Ng,In,In,X,Y).
no
| ?- tgate(Pg,Pg,In,Dut,X,Y).

Pg = n12_ OtypeIlId_4XOR,

In = n12_OtypellId_4COUT1,
Out = n12_OtypelIIb_15COUT1,
X = -306,

Y = 97 ;

Pg = ni2_OtypeIIIb_15XO0R,

In = n12_OtypeIIIb_15COUT1,
Out = ni12_OtypellIa_14COUT1,
X = -306,

Y = 170 ;

Pg = n12_OtypeIIIc_9XOR,

In = n12_OtypelIlc_9COUT1,
Out = n12_OtypeIIIb_14COUT1,
X = -290,

Y = 316

In the previous example, the component database was queried for the existence of any trans-
mission gates that met condition 4 of Definition E2. In this case, no transmission gates were found.

However, when Prolog was queried for the existence of transmission gates that violated condition

3 of Definition E2, several instances were found and reported.




Design errors may also be found through the establishment of Prolog rules prior to perform-
ing duplicate transistor reduction and extraction in the case of Definition E1. Furthermore, the
extraction process may be performed after extraction using Level-1 rules to identify components
that satisfy to Definition E2. The following is an example of a rule used to find a design error

identified in Definition E1.

/* Error type 1 =/
find_error :-
ptrans(G,nvdd,ngnd,X,Y),
write(’Bad trans, ’),write(ptrans(G,nvdd,ngnd,X,Y)),
write(’: removed’),nl,
remove_p(G,nvdd,ngnd),
fail.
/% Error type 2 */
find_error :-
ntrans(G,nvdd,ngnd,X,Y),
write(’Bad trans, ’),write(ntrans(G,nvdd,ngnd,X,Y)),
write(’: removed’),nl,
remove_n(G,nvdd,ngnd),
fail.
/* Error type 3 */
find_error :-
ptrans(ngnd,nvdd,S,X,Y),
write(’Straight wire, '),write(ptrans(ngnd,nvdd,S,X,Y)),
write(’: removed’),nl,
remove_p(ngnd,nvdd,S),
fail.
/+*+ Error type 4 »/
find_error :-
ntrans(nvdd,ngnd,S,X,Y),
write(’Straight wire, ’),write(ntrans(anvdd,ngnd,S,X,Y)),
write(’: removed’),nl,
remove_n(nvdd,ngnd,S),
fail.
/* Error type 5 »/
find_error :-
ptrans(nvdd,A,B,X,Y),
write(’Open connection, ’),write(ptrans(nvdd,A,B,X,Y)),
write(’: removed’),nl,
remove_p(nvdd,A,B),
fail.
/* Error type 6 =/
find_error :-
ntrans(ngnd,A,B,X,Y),
write(’Open connection, ’),write(ntrans(ngnd,A,B,X,Y)),
write(’: removed’),nl,
remove_n{(ngnd,A,B),

51




fail.
find_error.

Notice that find_error. is listed last. This is to provide a successful outcome when all of the

previous clauses fail.

The following Prolog rules are used to identify design errors that conform to Definition E2.

find_more_errors :-
clk_inv(P,P,In,0ut,X,Y),
write(’Screwy clk_inv, ’),write(clk_inv(P,P,In,0ut,X,Y)),
write(’: removed’),nl,
retract(clk_inv(P,P,In,Out,X,Y)),
fail.

find_more_errors :-
clk_inv(Pg,Ng,Bad,Bad,X,Y),
write(’0Oscillating clk_inv, ’),write(clk_inv(Pg,Ng,Bad,Bad,X,Y)),
write(’: removed’),nl,
retract(clk_inv(Pg,Ng,Bad,Bad,X,Y)),
fail.

find_more_errors :-
tgate(P,P,In,Out,X,Y),
write(’Screwy tgate, ’),write(tgate(P,P,In,Cut,X,Y)),
write(’: removed’),nl,
retract(tgate(P,P,In,0ut,X,Y)),
fail.

find_more_errors :-
tgate(Pg,Ng,Bad,Bad,X,Y),
vrite(’Worthless tgate, ’'),write(tgate(Pg,¥g,Bad,Bad,X,Y)),
write(’: removed’) ,nl,
retract(tgate(Pg, Ng,Bad,Bad, X,Y)),
fail.

find_more_errors :-
inv(Bad,Bad,X,Y),
vrite(’0Oscillating inv, ’),write(inv(Bad,Bad,X,Y)),
write(’: removed’),nl,
retract(inv(Bad,Bad,X,Y)),
fail.

find_more_errors.

Identifying Internal Design Errors The Prolog rule, find_anomaly list /2 is used to
identify “global”* connectivity errors such as the one shown in Figure 7. Identifying this class of

error is important, since connections that violate the component boundary implied by a structural

4The discussion of global and local connectivity is in Chapter 3.

52




VHDL description change the behavior of the component to be extracted. The following Prolog

program is a definition for identifying this problem.

find_anomaly_list(_,(3).

find_anomaly_list{(Comp, [Node|Rest]) :-
find_anoraly(Comp,Node),
find_anomaly_list(Comp,Rest).

The Prolog rule calls upon a series of clauses under find_anomaly /2 that compares one of
the internal nodes of the component being extracted to the external connections of the all other
components in the component database. An example of how find_anomaly /2 is defined to examine

transistors and a transmission gate is the following.

find_anomaly(Comp,Node) :-

(ptrans(Node,_,_,X,Y);

ptrans(_,Node,_,X,Y);

ntrans(Node,_,_,X,Y);

ntrans(_,Node,_,X,Y)),

write(’Failure extracting component ’),write(Comp),

write(’.’),nl,write(’ Internal node, ’),write(Node),

write(’, connected to a transistor at X:’),

write(X) ,write(’, Y:?),write(Y),write(’.’),nl.
find_anomaly(Comp,Node) :-

(tgate(Node,_,_,_,X,Y);

tgate(_,Node,_,_,X,Y);

tgate(_,_,¥ode,_,X,Y);

tgate(_,_,_,Node,X,Y)),

write(’Failure extracting component ’),write(Comp),

write(’.’),nl,write(’ Internal node, ’),write(Node),

write(’, connected to a tgate at X:’},

write(X),write(’, Y:?),write(Y),write(’.’),nl.
find_anomaly(_,_).

The Prolog program find_anomaly /2 is set up to produce warning messages to the designer and
continue hunting for other possible connectivity problems. Further, find_anomaly/2 is set to
succeed in this case so that errors for other components may be found. Use of a !,fail could have

been used to force failure upon the first encounter if desired.




A separate find_anomaly/2 is generated for each type of component that can exist in the
component data base. Additional find_anomaly /2 clauses are generated automatically by vhdi2ges
{Dukes 91b) for each component that can be generated on the component data base by an extraction

rule.

The Prolog program find_anomaly_list/2 corresponds to the form of P.. The list passed
to find_anomaly _list/2 is guaranteed to be in the termination domain D, by atom_list/1 used
in not_connected /2. Further, find_anomaly/2 executes only while component-facts of the type
being searched exist in the component database. Thus, we can be reasonably certain that

find_anomaly list /2 will always terminate.

54




V. Delay Models for VHDL

Timing information used for hardware design may be viewed from several perspectives. The
physical representation of the design (e.g. mask layout description) can provide close approxima-
tions of the actual resistive and capacitive loading encountered in a design. At a more abstract
level of the hardware design, a VHDL model may be used to predict hardware timing from a di-
rect or indirect perspective. The discussion that follows presents three methods of accomplishing
pin-to-pin critical path analysis. The type of critical path analysis examined in this research per-
forms the process of extracting pin-to-pin critical paths in two steps. A calculation of propagation
delays through the lowest-level components is performed in the first step. The second step involves

summing delays from inputs to outputs for all possible critical paths.

For instance, the physical layout description may be viewed as the lowest level perspective
in critical path analysis. Extracting pin-to-pin critical paths from a layout description using logic

extraction occurs in the following manner.

1. Propagation values are calculated from known capacitive and resistive loading in the circuit.

2. Delays are summed along paths from input pins to output pins.

Calculating Delays from Layout

Shown in Figure 11 is a simple model of a CMOS inverter used to calculate delay'. The
figure represents the resistive and capacitive elements that would be encountered. The elements in
the circuit are R, for the resistance through the channel of the p-type MOS transistor, R, for the
resistance through the channel of the n-type MOS transistor, Ry for the “lumped?” resistance of the

output node, Cy, for the “lumped3” capacitance of the output node, C; ...C, for the capacitance?

'This model was chosen to demonstrate one method for incorporating delay calculations into the extraction
process of GES.

2the resistance as computed on a node by magic’s extract

the sum of the capacitances between the output node and all other nodes reported by ertfsim

4Since ert2sim does not produce gate capacitances, a gate capacitance is also computed from the existing tran-
sistors in the transistor database in GES.

55




on every MOS gate connected to the output node, and Vj for the voltage between the output node

and GND.

N Ig o Lo v

C
R &

Figure 11. A Simple Delay Model.

From Figure 11, two delay models may be constructed. The general equation used for prop-

agation delay is®
=Y R ) C ()

For the case where the p-type MOS transistor of the circuit is turned on, the n-type MOS transistor

of the circuit is off, and Vp is equal to ground, the propagation delay may be described by

T:(RP+RL)(CL+ZC.'). (8)

i=1

Likewise, for the case where the n-type MOS transistor of the circuit is turned on, the p-type MOS

transistor of the circuit is off, and Vp is equal to Vdd, the propagation delay may be described by

n
r=(Ra+ RL)(CL+ Y C). (9)
i=1
If we consider the CMOS inverter as a degenerate case of the NOR-gate and the NAND-
gate, propagation delays may also be calculated by the appropriate parallel and series formulas for

the p-type and n-type MOS transistor networks of both types of gates. Calculating propagation

>This model for computing delays is typical of one method shown in the literature (Ouste 84)

56




delays based on this model appears valid, provided the output node terminates only on gates of

MOS transistors. Should pass transistor logic exist in the circuit, a different view must be adopted.

For pass-transistor logic, the following practice is adopted. A pass-transistor path is one
which follows along the drain to source of a p-type or n-type MOS transistor without a termination
to Vdd or GND. The total load resistance, R, is determined from the appropriate parallel and
series computations of resistances along all pass-transistor paths connected to the output node.
Furthermore, all capacitances along all pass-transistor paths connected to the output node are
summed. Essentially, a worst-case calculation of possible loading is performed by assuming all pass
transistors are in a conducting state. A worst-case calculation is necessary for conducting critical

path analysis.

Determining Propagation Delay in VHDL

There are three methods that may be used to determine propagation delay from a VHDL
model. The first method uses the timing information explicitly stated in the VHDL model through
the signal assignment statement. The second method calculates the timing information from the
loading on a particular input. The third method combines the delay based on loading and the

explicitly stated delay in the VHDL model.

Delay Model Specified in VHDL As indicated in Figure 12, delays are specified by the
VHDL model for all components regardless of the output drive. In this case, a specified delay on
a component in VHDL implies the drive required by that physical component to meet that delay.
Propagation delays along paths are then determined in a way similar to step two for the physical

layout description.

Delay Model for Loading in VHDL Shown in Figure 13 is a model for calculating delay

of a component output. The function

o




Out

Comp 'Ll
Dai | °  where Dy = delay
-LN

delay is fixed regardless of N

Lol

Figure 12. Delays Specified in Description.

delayy, = f([Ll,...,LN],Dd,-) (10)

returns a delay value based on the loading of other components being driven by the output and an
internal drive capacity, D. Once the delays are calculated for all components, delays are summed
along paths from input pins to output pins in a fashion similar to the second step for critical path

analysis of physical layout.

Out
uLl

Comp -
Dar | ' where Dy, = drive
. LN

delaydr = f([Ll, ceny LN], Dd,-)

Iy

Figure 13. Delays Calculated from Fanout.

It is not obvious how the fanout for a signal may be calculated. The information may be
gathered by flattening a VHDL model using a Prolog routine called flatten. The Prolog routine
converts a hierarchical VHDL model to a gate-level component netlist. Propagation delays may
then be calculated by determining the number of inputs being driven by a signal. The search is easy
to perform and each component has a propagation delay calculated through this method. At this
point, logic extraction may be conducted through a customized GES routine, performing pin-to-pin

critical path analysis.

58




Hybrid Delay Model in VHDL The hybrid delay model combines the two previous

models. A hybrid delay equation may be constructed as follows.

deIayhy = delaygr + Da (ll)

Like the delay model for loading in VHDL, delay values for all components must be calculated
first, assigning each a delays-. Then a delayy, is calculated for each component based on Eq 11.
Afterwards, propagation delays are determined in a manner similar to step two for the physical

layout description.

59




VI. Critical Path Analysis

Knowing that a layout specification matches a structural specification component-by-compo-
nent and connection-by-connection is not sufficient to guarantee equivalence between both struc-
tural specification and a layout specification. Other properties, e.g., power requirements, circuit
delays, and circuit reliability, are important to consider in addition to circuit function. If a cir-
cuit does not meet a timing constraint specified in its structural specification, then it is useless

regardless if it is funtionally equivalent to its structural specification.

Presented in this chapter is one approach to performing pin-to-pin critical path analysis of
a circuit within the logic extraction process. We will show how logic extraction limits the circuit
size uader consideration for pin-to-pin critical path analysis and prunes many noncritical paths
early. Through the process of pruning, pin-to-pin critical path analysis of very large circuits may

be pcssible.

Though this chapter focuses on pin-to-pin critical path analysis, other properties of a circuit
may k. examined. We hope that the discussion on pin-to-pin critical path analysis here will provide

insig::t as to how other properties may be extracted within logic extraction.

Consideration of Feedback in Critical Path Analysis

The contribution of feedback loops to pin-to-pin critical analysis is considered here before
prese 1ting the definitions for structures used in the pin-to-pin critical path analysis. Figure 14 is a
Huffi \an model {Hayes 88:108-109) for a typical circuit. CN represents the combinational circuit
network and L represents the latching or memory circuit. The output of the circuit depends upon
the inputs and the present state values of L. In a stable circuit, the delays from input to output in
the CN do not include the feedback paths. Thus, the delay of the combinational circuit is actually

within the CN portion of the model. The asynchronous cycle time may be computed by “breaking”

60



the feedback paths in the VHD . model and extracting the circuit with a new VHDL model, thus

adding the CN and L critical paths together.

Figure 14. Huffman Model.

Extracting Critical Paths

Every component above the transistor level in GES contains a set! of paths. A path, P, is a
pair, [L. D], where L? is an edge-bounded acyclic path (EAP) and D is the propagation delay of
L. L is an ordered collection of nodes where the head is the first node in the EAP anu the last is
the last node in the EAP. All of the nodes in L describe a path through a circuit. For the purpose
of constructing pin-to-pin critical paths through a circuit, E is a set of input and output nodes for

the component being extracted, which is a subset of all the nodes in the circuit.

Path Generation Without Feedback

The following are definitions for terms and functions used to form the extraction of critical

paths during the extraction process in GES. For notation, a preceding lower case letter on a label

iSets and lists in the context of this discussion have different meanings, though both are represented through
lists in Prolog. In the case of a set, the conventional meaning as an unordered collection of unique objects prevails.
A list is considered to be an ordered collection of objects.

2L is used here since the structure conforms to list /1.

61




designates an atom, a preceding upper case letter on a label designates a variable, and a preceding

underscore?® designates a “don’t care.”

Definition 1 A node is an interconnection label in a circuit. For notalion, @ node is represented
by n.

Definition 2 An EAP is an ordered sequence of nodes. An EAP 15 constructed as [ny,...,np),
where m > 2 and ny # ng,.

Using the symbol | as a list constructor, an EAP may be constructed as [n,|[ns|[ns]...[nm]|[]].. ]]).
The node n, is called the head, the list of nodes following n; is called the tail, and n,, is called the
last. For notational convenience, the head of L may be referrc’fi to as head(L), the tail referred to as
tail( L), and the last referred to as last(L). Functionally, the head, tail, and last may be represented

as the following.

head([ny,...,nm)) = ny
tail([nl,ng,...,nm]) = [ng,...,nm]
{ast{[ny,....nm]) = nn

Definition 3 The predicate, member(n, L), is true when n € L and false otherwise.

member(N,[N|.L]) — true

member(N,[_N1L]) — member(N, L)

In Prolog. member may be written as the following.

*In Prolog. an underscore designates a “don’t care.” In order to preserve t! = meaning of a variable location and
avoid singleton variable warnings in Quintus Prolog (Quint 88), this notation was adopted.

62




member (¥, [N|_L]).

member (N, [_N|L]) :- member(¥,L).

Definition 4 The predicate, append(Ly,Ly,L3) is true when Ly = [ny, ... ,ny), Lz = [Rmy, - .-

1nm+p]: and L3 = [nlv BRIRR L2 SRL2 'S RERI ynm+p]'

In Prolog, the append function may be written as follows.

append([H|L1],L2,[H|L3]) :- append(L1,L2,L3).

append([],L,L).

Let Ly, La,...,L; be EAPs, H; = head(L;),T; = last(L;) and E a set of input and output

nodes for the component being extracted which is a subset ¢f all the nodes in the circuit.

Definition 5 join(L,, L2, L3) is true iff

1. member(H,, E),
2. T\ = H»,
3. member(Ty, F) 15 false,

{. member(Ta, L) 1s false,

<

Ry = lail(Lg),

6. and append(L,, R2, L3).

In Prolog, the join function? may be written as the following®

‘Difference lists (Bratk 86:192) may be used to increase the efficiency of the operations shown.
*In some Prolog implementations (Quint 88), the not/1 function does not exist. In this context, the not/1
function is assumed to be defined as

not(Goal) :- call(Goal),!, fail.
not(J).

63




join([H1|R1], [T1|R2],E,L3) :-
member (Hi,E), last(R1,T1), last(R2,T2), not(member(T1,E)),

not (member (T2, [H1/R1])), append([H1|R1],R2,L3).

For convenience, the symbol “x” will be used to denote the join operation in the following

manner.

[Ls = Ly La) % [join(Ly, Ls, L3))]. (12)

EAPs may only be constructed using the join predicate. In essence, the join operation may be

thought of as an EAP extension function. This being the case, we may show the following.
Lemma 1 An EAP, L, with head(L) ¢ E, will have only two nodes (m = 2).

Proof

By Definition 5, only EAPs with head(L) € E may be extended. Therefore, all EAPs
with m > 2 must have their head(L) € E leaving lists with head(L) € E with only
m = 2.

Theorem 1 Let L be an m node EAP where2 < mand1 <i<m, 1< j<m, andi # j.

Vne€ L, if n; =n; then L is not a valid EAP.

Proof

base case: Assume m = 2. Then L = [n;,n,]. Assume n, = n,. This is not consistent
with Definition 2. Therefore, ny # nj.

hypothesis: Assume m > 2. Then L = [ny,...,ny]. n; # n, by Definition 2. By
Lemma 1, we know that n; € E. Furthermore, we assume that L contains no feedback
loops.

induction: Ly = [n1,...,nmy1] and Ly ;my1 = [fm, Nm41). We need to show that
L4t = Loy * Lenm41 -

The EAP Ly cannot exwst ur be formed if n,, € E by Definition 5. Thus n,, ¢ E
and by Lemma 1, the EAP, L, m41, must have only two nodes. For the operation to
be valid, npy 41 € Ly by Definition 5 thereby avoiding a feedback loop.

64




From Theorem 1, it is evident that EAPs are constructed free of feedback loops through
the “join” function. Figure 15 shows how the join function works initially. As noted previously,
feedback loops do not contribute to the critical path of CN and may be eliminated. This being the
case, the resulting EPAs constructed from a finite collection of EPAs will be finite and the number
of possible paths, P, spanning a component from input to output will be restricted by a finite set

E. Some bounds on the process of forming pin-to-pin critical paths may be realized.

X Y X€E

e Ly > Y¢F
MZ Z gL
>l

X 117)

e La >

Figure 15. Initial Application of the join Function.

Figure 16 shows how the join function works at some point after the initial join function
is used. Examining L2 in Figure 16, it appears that cycles might exist within L3 after the join
operation is performed; however, the nodes forming the EAP between Y and Z are the interior
nodes of the subcomponent to which the path L, belongs. Essentially, L, may be considered to
have only Y and Z as shown in Figure 15. Thus, Theorem 1 and Lemma 1 still hold regardless of

the level of hierarchy.

(X 1Y XeE

e [ | et Y&F
Yl 17] Z¢L
re L, >4

| 1 Y] 17]

L L3 —{

Figure 16. General Application of the join Function.

Within an extraction rule, there may exist more than one path for each subcomponent. Before

any path manipulation is performed for a component, the subcomponents and interconnections are

65




checked by the extraction. Afterwards, a list of the component’s external signals is constructed.
All of the paths from the subcomponents are appended together into a list of paths. The list of

paths and external signals is then passed to a Prolog function.

At the top level, the algorithm for finding the pin-to-pin critical paths is as follows.

initial conditions: a list, E, of external nodes and a list of paths.

1. Generate all possible new paths.
2. Eliminate any path for which the head or tail of the list is not in E.

3. Eliminate paths that are not pin-to-pin critical paths.

The algorithm for generating new paths is the following.

initial conditions: a list, E, of external nodes and a list of paths.

1. Perform the join operation on all lists of paths and add their respective delays.

2. Eliminate paths that were used to construct new paths where the heads of their
EAPs are in F.

3. Repeat until no new paths are generated.

Once the extraction process has completed, another routine may be used to generate a structural
VHDL description. The VHDL description is currently generated with pin-to-pin critical path

information as comments.

Efficiency

Assume a component with I inputs, O outputs, and M nodes. Initially, all EAPs within
the component will contain two nodes. In the worst case, all nodes might be interconnected. An
enumeration of a worst-case initial condition is shown in Table 1. The “*” indicates no entry
allowed®. From Table 1 the only lists that do not exist are those along the diagonal. This being

the case, the worst-case initial number of EAPs is m? — m or O(m?).

€Definition 2 in the previous section

66




Now we consider the worst case number of EAPs that might exist between two nodes. For
the time being, consider only the upper-right half of Table I and an EAP with n; as an input and
n,, as an output. From the table and the join function, the possible EAPs may be enumerated in

the following manner.

— -0 0 0
L() = [ﬂ],)&l,...,Xm_3,Xm_2,nm]
— 0 0 1
L[ _— [nl,;xl,...,Xm_3,Xm_2,nm]
— -0 1 0
L2 = ["1»)‘1,---'Xm—ava-zv"m]
— 4\ 1 r1
Lg = [nl,,\l,...,Xm__a,/\m_z,nm]
— 1 71 1
[J'lm-?_l — [n]“Yl,...,1‘m_3,Xm_2,nm]

In each EAP, \; designates the existence, X!, or nonexistence, X?, of its respective node, nj+1. In
the case \)” the corresponding comma is not considered to exist in the EAP. From the enumeration

of possible EAPs that may exist from n; to n,,, the order is O(2™-2).

Table 1. Initial EAPs in a Hypothetical Component

node ny o na . Nm
ny * [r1n2)  [nina) .. [n1,nm)
ny (o, ny] * [na,n3] ... [n2,nm]
ns (n3,m]  [n3.m] * ... [n2ynm]
M | [Pmomi]  [Pmon2]  [Pm.na] .. *

If we include the bottom-left half of the matrix, the problem becomes more complex. Since
the interior nodes may now occur in any order and appear no more than once, the complexity of

the problem is raised to O((2™~?}!). This upper bound is highly pessimistic. Normal circuits do

67




not contain this high level of interconnectivity. The number of EAPs is further constrained by the

scope of the extraction rule.

Since the efficiency of the join function is O((2™~2)!), the join function is highly unreasonable
as a tool for pin-to-pin critical path analysis, even for a modest number of interconnected nodes.
However, within the realm of the GES extraction rule, the size of the circuit being examined is
usually small. As a result, the number of interconnected nodes is small. The hierarchical nature
of VHDL allows a circuit to be viewed as a component constructed of subcomponents which are,
in turn, constructed {tem subsubcomponents and so forth, until the lowest level is reached. The
extraction system uses the hierarchical view of the circuit, working from the lowest level toward the
highest-level component view. As a result of the extraction process, a critical path of a component
may be thought of as the construction of smaller critical paths through several of its subcomponents.
Figure 17 shows how a pin-to-pin critical path is constructed from the pin-to-pin critical paths of
its subcomponents. Therefore, it is not necessary to carry along other noncritical paths within
subcomponents, thereby pruning out many nodes that would not contribute to the pin-to-pin

critical path of the component.

Subcomponents

A T

— I

—] P

— | e

———] —b
Component

Figure 17. Critical Path Analysis.

68




False Paths

Though a discussion of all -ritical path analysis techniques is beyond the scope of this research,
it is important to discuss one aspect of critical path analysis. The previous technique of calculating
a pin-to-pin critical path for a component considers a full path regardless of whether the path
through the subcomponents will contribute to the actual delay of the component. This type of

path is referred to as a false path.

For a purely-combinational circuit, this type of problem may not arise; however, for a se-
quential circuit the result may be different. Should a pin-to-pin critical path be identified as in the
previous section, there is no guarantee that there is a state in the hardware under consideration

that would lead to tire use of the identified path.

To illustrate a false path, consider a typical clocked JK flip-flop as shown in Figure 18. When
the ciock pulse on ¢ is high, the inputs from j, k, q, and notq are able to propagate through
the first stage, but not thr ugh the second stage. When the clock pulse on ¢ is low, values are

propagated through the second stage.

Stage 1 Stage 2

? |
1
4

>
=

}_z_'__ notq

Figure 18. Typical Clocked JK Flip-Flop.

69




Assume that the propagation delay through the first two NAND gates is 4 nanoseconds (ns),
the delay through the rest of the NAND gates is 3 ns, and the delay through the inverter is 1 ns.
Knowing the delays through the components of Figure 18, a set of paths may be constructed. The

paths are shown below.

[ [{notq,ul,4], [[j,ul).4], [[c,ul,4}, [lc,v],4], [[x,v],4], [[q,v],4],
{Cu,w},3]), [[x,%],3], ([w,x],3], [Cv,x1,3], [[c,notcl, 1],
([w,y],3], [[note,yl,3], [[notec,z],3], [(x,z],3],
[ly,q1,3), [[notq,ql.3], [[q,notq],3], [[z,notq],3] 1]

The set of input and output nodes for the component is £ = j, k, ¢, ¢, notq which we will represent

as the following.

[j,k,c,q,notql

After application of the algorithm for finding the pin-to-pin critical paths, the following set

of paths results for the clocked JK flip-flop.

[ [[notq,u,v,y,q1,13], [[j,u,%,y.q1,13], [[k,v,x,z,notql,13],
[(q,v,x,z,notql,13], [[j,u,w,x,z,notq],16], [[c,u,v,x,z,notql,16],
[[c,v,x,w,y,q],16], [[k,v,x,v,y,q],16] ]

[f stage 1 is broken from stage 2 in Figure 18, a maximum delay path through stage 1 is [[j,u,%],7],
and a maxtmum delay path through stage 21s [[w,y,q],6]. A maximum delay path through stage
i wilt o *te 7 ns and a maximum delay path through stage 2 will take 6 ns. Putting both stages to-
gether renders a maximum delay for the clocked JK flip-flop of 13 ns; however, the pin-to-pin critical
path analysis rendered a maximum delay path of [[j,u,w,x,z,notql,16] for a maximum delay
of 16 ns through the clocked JK flip-flop. The maximum delay path of [[j,u,%,x,z,notq],16] is

never used as a result of the clock.

70




Therefore, the rendered false path would provide an overly pessimistic view of the delay for a
given pin-to-pin critical path. So the model presented in the previous section should be used with
this caveat. If a more complicated model is desired, the previous section should be a guide on how

to incorporate other critical path analysis models into the logic extraction process.

71




VII. Examples and Results

In this section, four layout designs in magic will be examined. The first is a rather simple
design of a fabricated two-phase clock generator. The second design is an ALU that was verified
using GES and fabricated. The third design is a 60,000 transistor design. The last design is a larger
250,000 transistor design. In all four examples, GES was used in the layout process to identify
external and internal design errors. The first example demonstrates the Design-Rule Check (DRC)
capability of GES. In the second example, a design is verified using only GES for functionality and
critical path analysis. The third and fourth examples are used to demonstrate the performance of

GES on large custom VLSI chip designs.

Clock Generator

A clock generator is an example of a circuit that functions correctly, yet cannot be simulated
by estm (Terma 80). esim is a switch-level simulator that accepts as input a transistor netlist
from magic. The simulator state advances after values on all nodes have converged to a steady
state. Since the clock generator's normal function is to oscillate, esim cannot simulate the circuit;
however, GES can extract the logical composition of the circuit to demonstrate that the correct

components and the correct connections exist.

The transistors in the transistor netlist, generated from the mask layout description using
ertract, form fully static CMOS components. The logical components were extracted from the

transistor netlist. The following is a listing of the log file.

72




| ?7- ges.

finished with read.

Capacitor ptrans(nIZ_CAP2,n3_140_8,n3_140_8,136,52):removed
Capacitor ntrans(nIZ_CAP1,n3_12_115,n3_12_115,9,-42):removed
finished with find_error.

finished inverters.

finished tgates.

finished clk_inv.

finished nand.

finished nor.

finished find_more_errors.

There were two capacitors placed in the circuit to vary clock frequency and duty cycle. Both did
not appear in the transistor netlist using mezrtra (Terma 86); however, they did appear using eztract
(Calif 86). The input to GES used the output from eztract; thus the capacitively isolated signals,
1Z.CAP1 and 1Z_CAP2, show up in the report as capacitive transistors. The capacitively isolated
signals nIZ_CAP1 and nIZ_CAP2 were found and removed. All other components in the circuit were

successfully extracted using GES.

GES produced a listing of the components in the clock generator and their interconnections.
The mask layout description of the clock generator was verified to have been generated correctly

inasmuch as the components and their interconnections were concerned.

To introduce a flaw into the clock generator circuit, the metal-1 line for GND and the metal-
1 line output of an inverter were shorted together, demonstrating a possible human error during
layout. Figure 19 is a circuit diagram of the normal and abnormal portion of the affected circuit.
To help make the example more interesting, a polysilicon line has also been severed. The first fault
demonstrates a stuck-at-0 fault, whereas the second demonstrates a floating fault on one portion
of the inverter. In addition to the external errors, an internal error is introduced between a NOR

gate and an inverter. At this point there is a multiple fault in the circuit.

The following is a log of the Prolog session using GES on the errant clock generator circuit.




NORMAL ABNORMAL
vdd vdd vdd vdd
gnd gnd gnd gnd

Figure 19. Circuit Diagram of Normal and Abnormal Circuit.

| ?- ges.

finished with read.

Bad trans ptrans(n3_12_115,nvdd,ngnd,70,7):removed

Straight wire ptrans(ngnd,nvdd,n3_44_29,99,8) :removed

Capacitor ptrans(nIZ_CAP2,ngnd,ngnd,136,52) :removed

Capacitor ntrans(nIZ_CAP1,n3_12_115,n3_12_115,9,-42):removed

Capacitor ntrans(n3_12_115,ngnd, ngnd,71,-21) :removed

finished with find_error.

finished inverters.

finished tgates.

finished clk_inv.

finished nand.

Failure extracting component nor_gate(n3_72_106,
n3_340_35,n3_238_103,155,11,1). Internal node,
n3_314_22, connected to an inverter at X:197, Y:13.

finished nor.

finished find_more_errors.

ALU

The design and construction of the ALU started with the VHDL design and ended with

vertfication of the layout description. The steps in the design of the ALU are shown below.

1. A Behavioral VHDL descniption was generated.
2. A Structural V7'DL description was generated.

3 Both the structural and behavioral descriptions were simulated together and results compared.

4. Corrections were made to the structural description as deviations were encountered.



5. vhdl2ges was run to generate a “customized” GES extraction system from the structural VHDL

description for the design.
6. The physical layout description was generated by hand from the transistor level up.

7. As each cell was created, the “customized” GES extraction system was run to ensure conformance

to the structusal VHDL description.

8. Once the entire ALU was completed and verified using the “customized” GES extraction system,

pin-to-pin critical path analysis was performed.

At no time in the desigh was a switch-level simulation or SPICE simulation of the layout de-
sign performed. During the layout process, various errors in interconnections were caught by the

“customized” GES extraction system.

The ALU had a 4-bit opcode, 4-bit operands, 4/8-bit result, and comparator output. A view
of the layout for the ALU is shown in Figure 20. The design was primarily based on the bit-slice
design from (Mano 82:217-228) with the addition of a multiplier. Less than 2 man-weeks were
required to fully describe the design in VHDL and lay out in magic. A total of 4 integrated-circuit
chips were fabricated from MOSIS. All chips were tested with 80,000 test vectors in various sorted
and psuedo-random sequences and were found to be 100% functionally correct. The pin-to-pin
critical path analysis reported a 10MHz operation speed compared to the 13.5MHz actual speed of

the chips.

60.000 Transistor Design

GES was used on a 60.000-transistor design of a multiplier section in a floating-point multiplier
chip. The statistic/0 function of Quintus Prolog was used to report periodic timing statistics
within the extraction process. These results appear in Table 2. Less than 8 Megabytes of memory
were required for this design. The performance results were collected from a MicroVAX 3600

running Ultrix V3.1 using Quintus Prolog. Three-hundred-eighteen design errors w-re found in the




s 1 3 §§$ a 1Y 1K
g% H i P
P 1 SRR TR TR ; :

Figure 20. Layout of the ALU Integrated Circuit.

76




VLSI design. From Definition E1 {(shown in Figure 9), there were 30 type-1 errors, 36 type-3 errors,
10 type-4 errors, 10 type-5 errors, and 120 type-6 errors. From Definition E2 (shown in Figure 10},

there were 82 type-4 errors.

Time to Perform CPU Time (min:sec)
Read and Eliminate Duplicates 025:40
Find Definition E1 Errors 000:26
Find inv 002:56
Find tgates 683:15
Find invZ 121:32
Find nand 036:30
Find nor 025:21
Find Definition E2 Errors 000:05
Find dff 000:11
Write Component Netlist 007:24

Table 2. Performance on a 60,000-Transistor Design

From the perfoi mance measurement of GES in Table 2 we can make a few observations. I/O
for the example had moderate impact on the execution time of GES. Looking for errors in the design
can be done quickly. This is indeed desirable, since a designer might want to interact with GES in
an attempt to find errors that may exist within a layout design. Though the timing statistics do
not represent many level-N components, extraction for other types of components (e.g., half-adders,
adders, adder-arrays, registers) usually progresses quickly. The vast majority of extraction time is

usually spent with the level-1 rules.

Performance on a 250,000-Transistor Design

A 250.000 transistor-sized section of a 1,501,000 transistor-sized design was used to examine
the performance of the logic extraction rules when considering indexing. The inverter, transmission-
gate, and clocked-inverter rules were used. The section used was largely constructed of memory

cells. The platform used to perform extraction was a MicroVAX 3900 running Quintus Prolog

77




V2.4 on Ultrix V4.2. Shown in Table 3 are the results of running logic extraction on this 250,000

transistor-sized design.

Time to Perform CPU Time (min:sec) | Memory (MegaBytes)
Read and Eliminate Duplicates 270:25 24
Find Definition E1 Errors 002:43 24
Find inv 012:54 24
Find tgates 028:42 24
Find invZ 018:12 24
Write Component Netlist 032:42 24

Table 3. Execution Times of Indexed Logic Extraction Rules for a 250,000 Transistor Design

The CPU time for extracting inverters, transmission-gates, and clocked inverters was less
than an hour. From Table 3, the time to read in the transistors, eliminate duplicates, and build the
transistor-facts data base took considerable CPU time. Altogether, the process consumed 6:05:38
(h:mm:ss) of CPU time. The total CPU time required for a 60,000 transistor-sized design for the
same operation was 14:01:13. Indexing allowed for extraction of a design of more than four times

in size in less than half the time.

78



VIII. Limitations

Presently, there are two types of limitations that exist in using GES. The first type, alluded
to earlier, involves acceptable VHDL code. The second type involves designs that are not easily
extracted. After the discussion of the limitations, some suggestions for overcoming these limitations

will be discussed.

Currently, only structural VHDL descriptions with signals of mode in and out are accepted.
The modes butter and inout cannot be handled while still ensuring correct critical path analysis

as described previously. There do not appear to be problems with signals of mode linkage.

The second limitation specifically involves the types of component configurations that are
recognized and extracted. Assume that an extraction rule exists for identifying an AND gate
formed from a NAND gate followed by an inverter. A typical GES extraction rule for identifying

this configuration is the following.

and_gate :-
nand_gate(Nx,Ny, Ninterm,X0,Y0,_),
inv(Ninterm,Noutput,X1,Y1, ),
unique_component ( [[X1,Y1], [X0,Y0]]),
not_connected( [Ninterm] , [Nx, Ny, Noutput]),
retract (inv(Ninterm,Noutput,_,_,_)),
retract(nand_gate(¥x, Ny, Ninterm,_,_,_)),
find_anomaly_list(and_gate(¥x,Ny,Noutput,X0,Y0,1), [Ninterm]),
assert(and_gate(N¥x,Ny,Noutput,X0,Y0,1)),
fail.

and_gate.

From the extraction rule and_gate/0, every NAND gate followed by an inverter will be replaced

with an AND gate.

Consider an additional extraction rule, half_adder.cc/0, constructed as follows.

79




half_adder_cc :-
xor_gate(Nx,Ny,Nsum,X0,Y0,_),
nand_gate(Nx,Ny,Ncbar, X1,Y1, ),
inv(Ncbar, Ncarry,X2,Y2,_),
unique_component ( [[X2,Y2], [X1,Y1], [X0,Y0]11),
not_connected( [¥cbar], [¥x,¥y,Nsum,Ncarryl),
retract(inv(Ncbar Ncarry,_,_,_)),
retract(nand_gate(Nx, Ny, Ncbar, ,_, )),
retract(xor_gate(Nx, Ny, Nsum,_,_,_ )),
find_anomaly_list(half_adder_cc(Nx,Ny,Nsum, Ncarry,X0,Y0,1), [Ncbar]l),
assert(half_adder_cc(Nx,Ny,Nsum,KNcarry,X0,Y0,1)),
fail.

half_adder_cc.

We will use the and_gate/0 and half_adder_cc/0 rules to perform extraction on the following

components.

nand_gate(na,nb,ncbar,1,1,1).
xor_gate(na,nb,nsum,10,1,1).
inv(ncbar,ncarry,1,10,1).

If the half_adder_cc/0 extraction rule is used before the and_gate/0 extraction rule, the following

will result.

kalf_adder_cc(na,nb,nsum,ncarry,10,1,1).

However, if the and_gate/0 extraction rule is used before the half_adder_cc/0 extraction rule,

the following will result.

xor_gat¢ (na,nb,nsum,10,1,1).
and_gate(na,nb,ncarry,1,1,1).

There are three methods for solving this problem. The first method involves ordering the
rules such that the half_adder_cc/0 extraction rule is called before the and_gate/0 extraction
rule. This prevents the and_gate/0 extraction rule from interfering with proper extraction of the

half_adder_cc/0 extraction rule. The next two methods are interrelated.

80




If higher-level structural VHDL descriptions are not making use of the fact that an and_gate
VHDL description exists, then the and_gate VHDL description should be eliminated. However,
if it is necessary to have an and_gate VHDL description, ensure that all higher-level structural
VHDL descriptions take advantage of the and_gate VHDL description. This type of reasoning may
require the designer to make more prudent use of VHDL-based models. However, the designer may
employ another method of enriching the extraction rule set by simply adding an additional VHDL

description for half adders using AND and Exclusive-OR gates.

The previously described problem is not the only case where hierarchical extraction may
require some manual intervention. Some extraction rules might force extractions over component

boundaries. An exampl- of how this might occur follows.

The previously defined extraction rules, and_gate/0 and half_adder-cc/0, will be used.

Assume a new extraction rule for half_adder/0.

half_adder :-
half_adder_cc(Nx,Ny,Nsum,Ncbar,X0,Y0,_),
inv(Ncbar ,Ncout,X1,Y1,_ ),
unique_component ( [[X1,Y1], {X0,Y01]),
not_connected( [Ncbar], (Nx,Ny,Nsum,Ncoutl),
retract(inv(Ncbar,Ncout,_,_,_)),
retract(half_adder_cc(Nx,Ny,Nsum, Ncbar,_,_,_)),
find_anomaly_list(half_adder(Nx,Ny,Nsum,Ncout,X0,Y0,1), [Ncbar]),
agssert (half_adder (Nx,Ny,Nsum,Ncout,X0,Y0,1)),
fail.

half_adder.

The component list from earlier in the s~ction will be used. For clarity, the same netlist is shown

h(‘low.

nand_gate(na,ndb,ncbar,1,1,1).
xor_gate(na,nb,nsum,10,1,1).
inv(ncbar,ncarry,1,10.1)

81




If the extraction is performed in the order, and_gate/0, half adder_cc/0, and half_adder/0,

the result will be the following.

xor_gate(na,nb,nsum,10,1,1).
and_gate(na,nb,ncarry,1,1,1).

The three methods presented carlier are also useful in solving this problem.

There is one type of extraction problem that requires greater consideration. Assume we define
a four-input AND gate as shown in Figure 21(a). Using the new extraction rule for a four-input
AND gate, we will extract the circuit shown in Figure 21(b). Once the extraction process has
completed, two different interpretations may result. In one case, the extraction process might yield
two four-input AND gates and one two-input AND gate. In the second case, the extraction process
might yield one four-input AND gate and four two-input AND gates. Currently, the method
for solving this problem is to exclude VHDL descriptions for models that contain homogeneous

structure.

50

(2) (b)

Figure 21. Four-Input AND Gate and Simple Circuit.

The limitations discussed in this chapter effect only the completeness of logic extraction.
Because of these limitations, it is possible to have a structural specification that is equivalent to its
layout specification, but not have the relation shown true by logic extraction. These limitations,

however, do not effect the correctness of logic extraction.

82




IX. Conclusions and Recommendations

Conclusions

The objective of this research is to establish a formal definition of logic extraction, discuss
properties of logic extraction as it relates to formal hardware-verification, and demonstrate that
logic extraction is practical for VHSIC-class designs. We have established a definition of logic
extraction in Prolog. In this manner, the syntax and semantics of logic extraction are established in
a formal-executable frame-work. Further, properties of VHDL were identified and defined through
a formal-executable frame-work. As such, properties of soundness and guaranteed termination were
proven. Finally, pragmatic considerations for efficiency are met by taking advantage of the indexing

trait of Quintus Prolog.

The practical aspects of logic extraction were demonstrated through the production of a
working integrated circuit. Further, a methodology for employing logic extraction in the process
of formally verifying the equivalence relation between a structural VHDL description and a layout
description was exhibited. In addition to guaranteeing the equivalence between a structural VHDL
description and a layout description, the required time to lay out a custom VLSI chip was reduced

due to the diagnostic side-effect available through logic extraction.

This work has demonstrated that logic extraction is not as simple as previously thought.
Logic extraction embodies implicit as well as explicit interconnection properties. Logic extraction
may also limit the design problem space so that other diagnostic tools may be used to examine
portions of a circuit to generate further information for the designer. Extracting pin-to-pin critical

paths is but just one example.

Logic extraction is not just limited to custom VLSI. Logic extraction may be used to assist
verification of the correctness of synthesis. One attribute of logic extraction is the ability to extract
a circuit without the benefit of a structural VHDL description. This attribute may further aid in

the future respecification of nonreprocurable digital parts.

83




Recommendations for Future Work

The research explored in this dissertation provides a basis for several new areas of research.

Within this section, new areas of possible research are recommended.

Deriving logic extraction rules from an increased syntax of VHDL would be highly desirable.
Structural VHDL was shown to supply sufficient basis for constructing logic extraction rules; how-
ever, the properties being proven by logic extraction also exist implicitly in data-flow VHDL. A
tool for translating structural VHDL to data-flow VHDL is presented as an appendix and could be
reviewed as a formal method for bridging the gap between structural VHDL and data-flow VHDL

for logic extraction.

Now that critical path analysis has been demonstrated to be feasible within the framework
of logic extraction, other forms of analysis similar to critical path analysis appear plausible. There
appears to be potential for cell-by-cell power analysis of VLSI circuits. Computations based on
worst-case analysis or a typical-case model of power consumption seem feasible. It is possible
that some statistical methods may be used to predict power requirements closer to actual power

requirements through extraction rather than a worst-case power requirements analysis.

Other forms of path analysis may be considered. Reliability analysis might be implemented
through extraction, similar to critical-path analysis. Searching for the most unreliable path through

a system appears feasible using a deviation of the Huffman model for critical-path analysis.

An extension to the logic extraction system might include a function extraction routine for
domino (Weste 85:168) transistor networks. Logic extraction rules that are difficult to tailor to

some transistor networks could be enhanced through a new type of logic extraction rule.

GES is scheduled for use on a million-transistor project. Portions of a multi-chip module will
probably be synthesized. GES will be used to extract manually-generated portions of the design, i.e.,
the BIST portions (Seraf 91a) (Seraf 91b) of the design. In this manner, the manually-generated

portions of the design can be verified and the synthesized portions extracted to a gate-level view

84




for simulation in VHDL. This project should provide a basis for studying the utility of combining
logic extraction with synthesis in creating large integrated circuits. A methodology for such use

may be generated from the experience gathered here.

85




Appendix A. Definitions

Definition of Behavioral and Structural Specification

In this section, a definition will be given for behavioral specification and structural definition.
For the purposes of the presentation, combinational logic will be used. Afterwards, an example of

each in VHDL will be offered to help distinguish the two from each other.

A behavioral specification is an algorithmic description of how a specified system or compo-
nent is expected to react to a given set of input stimuli. There is usually nothing or very little
provided in the behavioral specification as to the internal physical makeup and interconnections
of the specified system of component. The behavioral specification may be represented abstractly
as in Figure 22. The boundary of the specified system or component is well defined. By well
defined we mean that all inputs and outputs are identified at the boundary of the specified device

or component.

1() e P 0y

1yt | S

Figure 22. Abstract View of a Behavioral Specification.

From Figure 22, the inputs to the specified device or componer. are represented as I where
I =g, ...,im and 0 < m. The outputs from the specified device nr component are represented as O
where O = og, ..., 0n and 0 < n. The algorithm for the specified device or component is represented

by the relation R where R C I x O.

86




A structural specification for a specified device or component provides a description of the
internal physical makeup and interconnections. The following criteria are used to determine a

structural specification.

1. A structural specilication is not a behavioral specification.

2. A structural specification may be constructed from one or more interconnected behavioral

specifications.

3. A structural specification may be constructed from one or more interconnected structural

specifications.

4. A structural specification may be constructed from one or more interconnected behavioral

specifications and structural specifications.

The behavioral specification may be viewed as a procedural method for portraying a specified device
or component. Alternatively, the structural specification may be viewed as a declarative method

for portraying a specified device or component.

The following is a VHDL model of a behavioral specification.

87




entity adder is
port(i0,i1,i2: in bit;
00,01 : out bit);
end adder;

architecture behave of adder is

function bv (input : bit) return integer is
begin
If{input = ’1’) then return(1);
else return(0); end if;
end;

function bv_inv (input : integer) return bit is
begin
If(input = 0) then return(’0’);
else return(’1’); end if;
end;

begin
process

begin

wait on i0,i1,1i2;

it ((bv(i0)+bv(i1)+bv(i2)) < 2) then
00 <= bv_inv(bv(i0)+bv(il1)+bv(i2));

else
00 <= bv_inv(bv(i0)+bv(i1)+bv(i2)-2);

end if;

if ((bv{(i0)+bv(il1)+bv(i2)) < 2) then
ol <= bv_inv(0);

else
ol <= bv_inv(1);
end if;

end process;
end behave;

From the VHDL description the inputs and output are enumerated as i0, i1, i2 for the inputs and
00,01 for the outputs. The assigned values for the outputs are determined algorithmically from the

inputs. There is nothing in the VHDL description that indicates the physical construction of the

specified device or component.

The following VHDL description is a structural specification of the same device.

88




entity adder is
port(i0,i1,i2: in bit;
00,01 : out bit);
end adder;
architecture structure of adder is
signal p,q,r : bit;
component half_add
port (a,b : in bit;
s,cbar : out bit);
end component;
begin

ol <= q nand r;

hal : half_add port map

( a = io,
b => il,
s => p,

cbar => q);

ha2 : half_add port map

(a=>p,
b => i2,
8 => 00,
cbar => r);

end structure;

Definitions for Other Terms

Hardware description language (HDL) “a language used to describe a circuit’s behavior or

structure.” (deGeu 89:27)

Logic synthesis “creation of a gate-level netlist from a register-transfer level description.” (deGeu

89:27)
Many-valued Logic an algebraic system consisting of more than two truth values (Resch 69:17).

Mapping “the process of formulating a design in terms of the cells available in a given parts

library.” (deGeu 89:27)

89




Netlist “a circuit design description in terms of structural elements and their interconnections.”

(deGeu 89:27)

90




Appendix B. Efficiency Issues

Foremost in the design of GES was the concern for correct execution of extraction. For designs
containing a large number of components, efficiency of the system does become a practical concern.

In a sense, this appendix addresses the pragmatics of performing extraction.

Logic Extraction

The extraction process can occupy a large amount of CPU time. In order to help reduce
the CPU time involved in extracting components, some heuristics are offered. The first heuristic
identifies low-level signature components of higher level components. The second heuristic elimi-
nates duplicate transistors where possible. The third heuristic seeks to reduce the complexity of
extraction-rules. These three heuristics are explained below. Finally, the knowledge of term in-
dexing in Quintus Prolog is used to increase the execution speed of logic extraction with minimal

impact on memory.

Extraction Without Indexing

The complexity of logic extraction consists of two parts. These parts concern the number of
components to be examined and the number of extraction rules used. For the purpose of discussion
we will assume a component data base consisting of one single type of component. By a single
type of component, we mean that the functor/arity of all components is the same. Assume that
the component data base is of size n. Additionally, assume a logic extraction rule matching m
components of the same functor/arity of the component data base. Assume also the process of
logic extraction as described in Prolog for nonindexed terms in the component data base. Under

such conditions, we can show the complexity is of O(n™).

91




Through induction, the following assertion will be proven
(E YA (Vm.(E (m—-1)) = (E m))) =>Vm.(E m)

where E represents the case of an extraction rule matching m components. Considering the base
case, an extraction rule must contain at least one matching component. The extraction rule will
execute n times for n components in the data base since the backtracking mechanism of Prolog

requires it. Therefore, for (m = 1) we have O(n).

Assume now the complexity of O(n(™=1) for the case of matching (m — 1) componeurts.
Under this assumption, it is necessary to examine the cause for an extraction rule to exhibit this

behavior. We »#l] use the following template for an extraction rule.

E -
C\(T¢, T3, ..., T}),
Co(TE, T},...,T?),

C(m—l)(Tfm—l)aT'z(m—l)) .. ')’I'gm_l))y

not_connected(Signal,, Signal.),
retract(C (T}, T4, ..., T))),
retract(Co(TE, T2, ..., T?)),

retract(C(m_l)(Tl(m—l), ™= 1Yy,
asserta( E(Signal.)),
fasl.

E.

In order to force backtracking complexity of O(n{™-1), each C;, 1 < i < (m — 1), would have to
succeed followed by the failure of not_connected/2.

Finally, the m** matching rule is added after C(m_l)(Tfm_‘),T;m‘l), . ..,T§""l)). By the
backtracking nature of Prolog, for every possible combination of the first (m — 1) matching rules,
the m*® matching rule will be tried n times. By assumption, the first (m — 1) matching rules are

executed (n{™-1)) times. By multiplication we have (n{™~1)) x n = n™ rendering a complexity of

o(n™).

92




Signature Components

Clauses within Prolog rules are executed sequentially. Thus, the order in which clauses appear
in Prolog rules can affect execution efficiency®. This procedural aspect of Prolog will be investigated
below to help understand how it can be used to speed up extraction. Assume we are interested in

increasing the execution efficiency of a particular Prolog rule, called comp; shown below.

comp; :-
subcompA(Ay, Az, ..., A,),
subcompB(By, Ba, ..., Bp),
subcompC(Cy, Ca, ..., Cy),
retract(subcompA(Ay, Az, ..., Ap)),
retract(subcompB(B,, B, ..., Bp)),
retract(subcompC(Cy,Cy, ..., Cy)),
asserta(compi(Coy,Coy,...,Co,)),
fail.

comp;.

Assume that there are j subcompA components, k subcompB components, and { subcompC
components. Should execution of the comp, rule lead to m comp, components exhausting all j, k,
and ! subcomponents, respectively, then j = ¥ = [ = m. Assume, now, the existence of another

component, comps, with the rule

comp, :-
subcompB(By, Ba, ..., By),
subcompC(C,Ca,...,Cy),
retract(subcompB(B,, By, ..., Bp)),
retract(subcompC(Cy,Cy,...,Cy)),
asserta(compy(Coy,Coy,. .., Co,)),
fail.

compy.

Assume, too, that n comp; components exist and that after the application of both rules,
comp, and compa, all j, k, and I subcomponents will be exhausted. From the above extraction
procuss, then, j = m and ¥ = | = m + n. Since subcompA occurs only in comp;, subcompA is

called the signature of comp;.

For those more familiar with Prolog, the terms shallow and deep backtracking may come to mind. For vhose
wishing to know more about these terms, a discussion is found in (Sterl 1986)

93




Furthermore, extraction using the Prolog rule comp; before the Prolog rule comps is preferred.
If we were to use the Prolog rule comp, first, then all k subcompB components would be searched for
inclusion in comps. Whereas, using the Prolog rule comp, first would reduce the search space to k—
m subcompB components for comp,. The search rationale is further predicated on the assumption
that some of the parameters for a subcomponent aid in the selection of subsequent subcomponents in
a Prolog rule. To help understand how parameters aid in the selection of subsequent subcomponents

consider the following explanation.

Assume that some parameter of subcompA, called A, where 1 < h < o, is connected to some
parameter of subcompB, called B; where 1 < i < p, in comp,. In the execution of the Prolog
rule comp;, Prolog will attempt to find a component in the component database called subcompA
before looking for subcompB. Once a component is found satisfying subcompA, the parameters of
subcompA will be instantiated (or unified) to the values corresponding to the component in the
component database. Since B; = Aj in subcompB, B; is instantiated to the value of A, and will
therefore constrain Prolog to finding a component that satisfies subcompB and B;. The additional

constraint of B; reduces the possible components to be considered in satisfying comp; .

Consider the following example using the Prolog rule described earlier for a D flip-flop:

dff :-
clk_inv(P2,P1,G,X,Xloc,Yloc,1),
tgate(P1,P2,D,X,_, ),
inv(X,G,_,_,1),
remove_tgate(P1,P2,D,X),
retract(clk_inv(P2,P1,G,X,Xloc,Yloc,1)),
retract(inv(X,G,_,_,1)),
asserta(dff(P1,P2,D,G,Xloc,Yloc,1)),
fail.

dff.

We may compare the dff rule to a new rule concerning xor.

94




xor :-
tgate(B,Bnot,A,XOR,_, ),
inv(B,Bnot,_,_,1),
inv(A,Anot,_,_,1),
tgate(Bnot,B, Anot ,XOR,Xloc,Yloc),
retract(inv(B,Bnot,_,_,1)),
retract(inv(A,Anot,_,_,1)),
remove_tgate(Bnot,B,Anot,X0R),
remove_tgate(B,Bnot,A,XOR),
asserta(xor(A,Anot,B,Bnot,XOR,Xloc,Yloc,3)),
fail.

xor.

Both dft and xor share transmission gates and inverters; however, c1k_inv only occurs in dff.
In this case, c1k_inv would be considered a signature component for df£. Also notice in xor that
finding tgate(B,Bnot,A,XOR,_,_) would easily lead to location of one inverter, aid in the quick

selection of a second, and to location of the second transmission gate.

Eliminating Duplicates

The second heuristic seeks to eliminate duplicate transistors. Since only digital logic is of
interest, additional transistors (added to increase the drive capacity of a circuit) needlessly increase
the search space. When only looking for the logic functionality of a circuit, no additional information
is gained from such transistors. The following is a Prolog rule adopted to eliminate duplicate

transistors while reading in the transistor netlist from a mask layout description.

remove_dup_trans :-
read(X),
remove_dup_trans(X),!,
remove_dup_trans.
remove_dup_trans.
remove_dup_trans(end_of_file) :- !.
remove_dup_trans(p(A,B,C,_,_,_,_)) :-
ptrans(A,B,C,_, ),!.
remove_dup_trans(n(A,B,C,_,_,_,.)) :-
ntrans(A,B,C,_,_),!.
remove_dup_trans(p(A,B,C,¥W,L,X,Y)) :-
asserta(p(A,B,C,W,L,X,Y)),!.
remove_dup_trans(n(A,B,C,¥,L,X,Y)) -
asserta(n(A,B,C,W,L,X,Y)),!.

95




Reducing Prolog Rule Complexity

The third heuristic addresses rule complexity. Rule complexity is directly related to the

number of components that must be matched. Therefore, rule complexity increases as the number of

components that must be matched increases. In general, simpler rules increase execution efficiency.

An example of how rule complexity influences efficiency may be found in the identification of

registers from a component netlist. Assume the following rule, register, for registers.

registerl :-
clk_inv(R,P,C1,Clbar,X,Y),
inv(P,R,_,.),
tgate(In,P,Cibar,Ci,_,_ ),
tgate(R,Q,C2baI,C2,_,_),
clk_inv(S,Q,C2,C2bar,_,_),
inv(Q,s,_,_),
tgate(S,0ut,Abar,A,_, ),
retract(clk_inv(R,P,C1,Cibar,X,Y)),
retract(inv(P,R,_,_)),
retract(tgate(In,P,Cibar,C1,_,.)),
retract(tgate(R,q,C2bar,C2,_,_)),
retract(clk_inv(S,Q,C2,C2bar,_,_)),
retract(inv(Q,S,_,.)),
retract(tgate(S,Out,Abar,A,_,_)),
asserta(register(In,Out,C1,Cibar,C2,C2bar,A,Abar,X,Y)),
fail.

registerl.

Figure 23 is a diagram of the component extracted by the register! rule.

Cibar C2bar Abar
P R Q

Out

Cibar C2bar

Figure 23. Schematic for register! Extraction Rule,

96




Assume a component netlist consisting of clk_inv, inv, and tgate that when extracted form
j registers with no residual components. Assume also that a register is constructed from two D
flip-flops, described below, and a transmission gate as in Figure 24 and by the Prolog rule for

register? that follows.

register2 :-
dff£(In,R,C1,Cibar,X,Y),
dff(R,S,C2,C2bar,_,_),
tgate(S,0Out,Abar,A,_, ),
retract(dff£(In,R,C1,Cibar,X,Y)),
retract(dff(R,S,C2,C2bar,_,_)),
retract(tgate(S,Out,Abar,A,_, )),
asserta(register(In,Out,C1,Cibar,C2,C2bar,A,Abar,X,Y)),
fail.

register2.

dff :-
clk_inv(R,P,Ci,Cibar,X,Y),
inv(P,R,_,_),
tgate(In,P,Ctbar,Cl,_, ),
retract(clk_inv(R,P,Ci,Cibar,X,Y)),
retract(inv(P,R,_,_)),
retract(tgate(In,P,Cibar,Ct,_,_)),
asserta(dff(In,R,C1,Cibar,X,Y)),

fail.

daff.

Cci Cc2
A

c C

np B by Mo

Abar

Clbar C2bar

Figure 24. Schematic for register? Extraction Rule.

Using the rules register? and dff there are k dff, where k = 2 % j, and j tgate. If the rule register!

is considered, there are k clk.inv, k inv, and | tgale where | = j + k.

97




For the purpose of the illustration consider register!, dff, and register2in the following manner.

The parts of each rule that query the fact database will also be numbered to aid in the discussion.

registerl :-
R11 clk_inv(R,P,C1,Cibar,X,Y),
R12 inv(P,R,_, ),
R13 tgate(In,P,Cibar,Ci,_,_),
R14 tgate(R,Q,C2bar,C2,_,_),
R15 clk_inv(S,Q,C2,C2bar,_,_),
R16 inv(Q,s,_, ),
R17 tgate(S,0ut,Abar,A,_,_),
dff :-
D1 clk_inv(R,P,C1,Clbar,X,Y),
D2 inv(P,R,_,_),
D3 tgate(In,P,Clbar,Cl,_, ),
register2 :-
R21 dff(In,R,Ci,Clbar,X,Y),
R22 dff(R,s,C2,C2bar,_,_),
R23 tgate(S,0Out,Abar,A,_,_),

Statements R11, D1, and R21 may be considered as enumeration statements (or ENUMERATE)
since they simply pick off from the database of facts the next available fact until all facts that
satisfy predicate/arity have been exhausted. Statements R12...R17, D2, D3, R22, and R23, may be
considered as database queries (or QUERY) since some or all of their parameters have been unified
based upon the previous statements. If we also assume the worst-case ordering of components such
that the first k clk_inv actually form the second dff, the rule register! will “fail” k times before it
will actually begin identifying registers. Furthermore, the k times that register! failed it identified
k dff. Using register! to identify registers, there will be at most k failed ENUMERATESs and 4 * k
failed QUERYs. The failed QUERYs are incurred since R12, R13, and R14 succeed, but R15 will

fail causing the entire sequence to backtrack and try a new clk.inv.

Consider the rules dff and register2 on the same component netlist. The rule dff will succeed
until all clk_inv have been exhausted. If we assume that the dff components were ordered in the
worst case then register?2 will have only k failed ENUMERATESs and no more. The 4 * k failed

QUERYSs from register! were avoided by reducing its complexity.

98




Generally, the above three heuristics have been found to increase the speed of execution.
Identifying signature components may be dependent on the composition of a given component
netlist and should therefore be considered. Eliminating duplicate components not only reduces
the search space but allows for parallelization of the extraction process. Finally, reducing rule

complexity increases efficiency by reducing search failures.

99




Appendix C. Using HOL

Preliminaries

Theorems may be proven in HOL either interactively or through the ML “let” command.
Interactive theorem proving is performed by entering line-by-line commands in order to manipulate
an HOL goal stack and HOL assumption stack. Entering theorems in HOL through the ML “let”

command inserts a proven theorem into a theory data file. Before HOL statements are presented,

some symbol definitions will be provided from the HOL manual.

Infix operators (Gordo87:3)

"ti=t2" is equivalent to "= t1 t2" (read as "t1 equals t2")
"g1,t2" is equivalent to ", t1 t2" (read as "the pair (t1,t2)")
"t1/\t2" is equivalent to "/\ t1 t2" (read as "t1 and t2")
"t1\/t2" is equivalent to "\/ t1 t2" (read as "ti or t2")
"t1==>t2" is equivalent to "==> t1 t2" (read as "t1 implies t2")
"£1<=>t2" is equivalent to "<=> t1 t2" (read as "t1 iff t2")

Binders (Gordo87:3)

iy, t" is equivalent to "!(\x.t)" (read as "for all x, t")
"?x.t" is equivalent to "7(\x.t)" (read as "for some x, t")
"ex.t" is equivalent to "@(\x.t)" (read as "an x such that t")

Notice that several symbols are represented through combinations of characters. The A is
represented in HOL by /\ for logical conjunction. The V is represented in HOL by \/ for logical
disjunction. The = is represented in HOL by ==> for logical implication. The & is represented
in HOL by <=> for equivalence. The V is represented in HOL by ! for universal quantification.
The 3 is represented in HOL by ? for existential quantification. Finally, the A is represented in
HOL by \ for lambda notation. HOL prompts the user for input through the use of a # prompt.

The ;; is used to terminate an HOL command.

100




Showing Structure Implies Behavior Through HOL

The device in Figure 25 is a three-input component with a single output. The figure illus-
trates several methods for specifying the behavior of the same device. The behavioral specification
representations shown are VADL, HOL, a Karnaugh Map, and a Truth Table. The translation of

VHDL into HOL is considered part of this research.

@ (x=11») and (y=;1x)\
and (z='0’) then

t <= ’1’;
z\x:d if; Karnaugh Map
if (x=’1’) and (y='1")
and (z=’1’) then

out <= ’0’; Xy z lout
end if; 000]O
if (x='0’) and (y='0") 001]a
and (2z=’0’) then 0o10]4d
out <= '0’; 011]d
if; 100144
\end if; J 10014
110]1
VHDL 11310
Truth Table
V x y z out.
x=TAy=T/\z_F=>out
x:TAy:TA T=>out
x=F Y_F)/\(Z*F)zt»(out F))

HOL

Figure 25. Behavioral Specifications for a Three-Input Device.

Three structural specification representations are illustrated in Figure 26. For each structural
specification, the gate description, VHDL description, and HOL description are shown. However,

nothing is known about the relation between the structural specifications shown in Figure 26 and

the behavioral specification shown in Figure 25.

101




~d

v

out <= y and Vyzout. out =
) ut (not z); YA~z

)

VHDL

HOL

out <= x and VY x z out. out =
) ut (not z); XAz

)

VHDL

HOL

out <= x and y and V x y z out. out
) ut (not z); XAyA-z

)

VHDL

HOL

Figure 26. Three Implementation Specifications.

102




Before a comparison can be made between the behavioral specification and the structural
specifications, a common specification language must be chosen. For the purpose of this research,
the basis language will be VHDL. However, the VHDL descriptions must be transformed to another
specification language to perform formal hardware-verification. Since HOL is to be used as the proof

mechanism, the VHDL descriptions must be translated to HOL.

From Figures 25 and 26 the following HOL definitions were written for the behavioral spec-

ification and the three implementation specifications.

let behave_spec =
new_definition( ‘behave_spec’,
"iIx y z out. behave_spec x y z out =

(x=T) /N (y=T)/\ (z=F) ==>(out = T)) /\
(x=T) /N (y=T)/\(z=T) ==> (out = F)) /\
((x=F) /\ (y=F) /\ (z=F) ==> (out = F))I");;

let impli_spec =
nev_definition(‘impli_spec®,
"ix y z out. impll_spec x y z out =
(out = x /\y /\ "2)");;
let impl2_spec =
new_definition( ‘impl2_spec*,
"tx (y:bool) z out. impl2_spec x y z out =
(out = x /\ “2)");;
let impl3_spec =
new_definition(‘impl3_spec’,
“ly z out. impl3_spec y z out =
(out =y /\ "z)");;

The HOL definition is the method for writing behavioral specifications and structural specifications.
In order to establish that the structural specifications will perform as described by the behavioral
specification, a proof will be constructed in HOL. For each structural specification, a theorem

will be generated stating that for all inputs and outputs, the structural specification implies the

behavioral specification. The first theorem,

V r y z oul. impll_spec z y z out = behave_spec z y 2 out, (13)

103




is shown in HOL below. Everything contained within quotes is considered to be the theorem.

#set_goal([],"!x y z out.
impl1_spec x y z out ==> behave_spec x y z out");;
"ix y z out. impll_spec x y z out ==> behave_spec x y z out"

() : void

*

The next step in the proof process is to remove the universal quantifier through a process in
HOL called generalization. The procedure for manipulating the theorem to be proved in HOL is
performed through a utility called expand. The expand utility provides a buffer between the user
and the theorem to be proved. This prevents the user from performing an incorrect manipulation
of the proof. In HOL, procedures called tactics are passed through expand to tell HOL how the
theorem is to be modified. In order to generalize the universally quantified variables, the GEN_TAC
tactic is used. Since GEN_TAC only generalizes one variable at a time, a modifier called REPEAT is

used to perform GEN_TAC until it fails.

#expand (REPEAT GEN_TAC);;
OK..
"impll_spec x y 2 out ==> behave_spec x y z out”

() : void

*

The next step is to replace impl1_spec and behave_spec with their definitions. This process

is performed using the REWRITE_TAC[] tactic.

#expand (REWRITE_TAC[impl1_spec;behave_spec]l);;
OK..

“(out = x /\ y /\ "2z) ==>

(x /\ y /\ "z ==> out) /\

(x /\ y /\ z ==> ~out) /\

("x /\ "y /\ "z ==> “out)"

() : void

#

104




At this point, the antecedent of the implication is assumed true through a tactic called
STRIP_TAC. This process will create a list of assumptions or append to a list of assumptions should

a list exist. Everything that appears between [ ] is considered to be an assumption.

#expand (STRIP_TAC) ; ;

OK..

"(x /\y /\ "z ==> out) /\
(x /\ y /\ z ==> “out) /\
Cx /\ "y /\ "z ==> “out)"

[ "out =x /\y /\ “2" 1]

() : void

#

The ASM_REWRITE_TAC[] is different from the REWRITE_TAC[] in that substitutions will be
performed within the theorem based upon the assumptions. The substitutions are performed by
matching the left-hand side of the assumption with some element within the theorem and rewriting

that element within the theorem with the right-hand side of the assumption.

#expand (ASM_REWRITE_TAC[]);;
OK..
"(x /Ny /\Nz==>"(x/\Ny/\ "2) /N
(Cx /N "y /\ "z == “(x /Ny /\ "z
[ "out = x /\y /\ “2" ]
() : void

The ASM_REWRITE_TAC[] and REWRITE_TAC[] tactics also perform other functions. One such func-
tion is to recognize tautologies through simple pattern matching. In this case, the

ASM_REWRITE_TAC{] tactic eliminated (x /\ y /\ "z ==> x /\ y /\ ~2) after the substitution.

The next step is to break up the theorem into two simpler theorems. The CO¥J_TAC is used
to create two separate theorems from a larger theorem formed by the conjunction of two separate

theorems.

105




#expand (CONI_TAC);;

0K..

2 subgoals

ey /N "y /\ Tz ==> “(x /Ny /\ "z)
C"out =x /\y /\ 2"]

“x /Ny /\z==>"(x/\y/ “2)"
[ "out = x /\y /\ "2" ]

() : void

#

The theorem that is now being manipulated is the bottom one in the previous list. Once

again, the STRIP_TAC tactic is used to assume the antecedent of the implication true.

#expand (STRIP_TAC); ;

oK..
"(x /\y /\ "z)"
L "out = x /\y/\ "z*]
[ nygn ]
[ uyn ]
[ ngn ]
() : void
*

When an assumption is a literal, the literal is assumed true. Therefore, every occurrence of
the literal in the theorem will be replaced with a “true” value when using the ASM_REWRITE_TAC[]

tactic.

#expand (ASM_REWRITE_TAC[]);;

OK..

goal proved

cee b= "(x /Ny N\ "2)

l-x /Ny /Nz==>"(x/\y/\ "2)

Previous subproof:

“vx /N Ty /\ "z ==> “(x /Ny /\ "z
[ "out =x /\y /\ 2]

() : void

*

106




Once a theorem has been shown to be crue, HOL responds with “goal proved” and a recapit-
ulation of the theorems manipulated up to the point of proving it true. Should any other theorems
remain to be shown, HOL will present them to the user. The “Previous subproof:” reply tells the
user which theorem is to be proven next. As before, the STRIP_TAC is employed to assume the

antecedent true.

#expand (STRIP_TAC);;
oK. .
"“(x /\y /\ "z
[ "out = x /\y /\ "2"1]

[ u-xn ]

[’ n-yu J

[ "-Z" ]
() : void

#*

At this point, an ASM_REWRITE_TAC[] tactic will complete the proof.

#expand (ASM_REWRITE_TAC[]);;
0K..
goal proved
A R VAR AN )]
- "x /A"y /A "z ==> “(x /Ny /\ “2)
- /Ny /Nz==>"(x/\y/\ "2)) /\
Cx/\ "y /\ "z == T(x /Ny /\ "2z))
I- (x /\ y /\ "z ==> out) /\
(x /\ y /\ z ==> “out) /\
("x /\ "y /\ "z ==> “out)
|- (out = x /\ y /\ "z) ==
(x /\ y /\ "z ==> out) /\
(x /\ y /\ z ==> “out) /\
("x /\ "y /\ "z ==> “out)
|- impli_spec x y z out ==> behave_spec x y z out
I- 'x y z out. impli_spec x y z out ==> behave_spec x y z out

Previous subproof:
goal proved
() : void

#

107




Once all of the theorems have been shown to be true, HOL responds by showing all of the theorems

that were generated, to include the first theorem. At this point, it has been shown that

Y z y z out. impll_spec ¢ y z out = behave_spec x y z out. (14)

Two more structural specifications remain to be examined. The next HOL proof will demonstrate

how HOL tactics may be combined to shorten the proof process.

The second HOL proof will show

V z y z out. impl2_spec z y z out => behave_spec x y z out. (15)

#set_goal([],"!x y z out.
# impl2_spec x y z out ==> behave_spec x y z out");;
"ix y z out. implZ_spec x y z out ==> behave_spec x y z out"

() : void

#

Experience with the first HOL proof would suggest that two HOL tactics could be used on
the present theorem. The REPEAT GEN_TAC and REWRITE_TAC[] tactics may be invoked through
the same expand HOL command. This is possible by the use of THEN. THEN works by applying the

tactic on the left-hand side to the theorem first followed by the right-hand side tactic.

#expand (REPEAT GEN_TAC THEN REWRITE_TAC[impl2_spec;behave_specl);;
0K. .
"(out = x /\ “z) ==>
(x /\y /\ "z ==> out) /\
(x /\ y /\ z ==> “out) /\
("x /\ "y /\ ~“z ==> ~out)"
() : void

*

Continuing to Draw upon experience from the previous proof, the remainder of the HOL

proof is performed below.

108




#expand (STRIP_TAC THEN ASM_REWRITE_TACI]);;

0K..
"(x /ANy /\ "z ==>x/\ "z) /\
(x /\y /\z==>"(x/\"2)) /\
(-x /\ "y /\ "z => “(x /\ "z))"
/

\ “z" ]

[ "out = x
() : void

#expand (CONJ_TAC);;

OK..

2 subgoals

"(x ANy /N\z==>"(x/\"2)) /\ Cx /\ "y /\ "z ==> “(x /\ "z)"
[ "out = x /\ “2z" ]

"x /Ny /\ "z==>x/\ "z"
[ "out = x /\ ~z" ]

() : void

#expand (STRIP_TAC THEN ASM_REWRITE_TAC[]);;
OK..

goal proved

I-x /Ny /\ "z ==>x/\ "z

Previous subproof:
"(x /Ny /\z=="(x/\"2))/\ C"x /\ "y /\ "z ==> "(x /\ “z)"
[ "out = x /\ "2" ]

() : void

#expand (CONJ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[]);;

0K..

goal proved

I~ (x /ANy /N z==>"(x/\"2)/\ Cx/\ " y/ "z=>(x/\"2))

I- (x /\y /\ "z ==>x/\ "2) /\
(x /Ny /\z==>"(x/\"2))/\
("x /\ "y /\ "z ==> "(x /\ ~z))

I- (out = x /\ “2z) ==
(x /\ y /\ "z ==> out) /\
(x /\ y /\ z ==> ~“out) /\
("x /\ "y /\ “z ==> “out)
|- !'x y z out. impl2_spec x y z out ==> behave_spec x y z out

Previous subproof:
goal proved
() : void

109




The previous two HOL proofs demonstrate several points. The first and obvious point is that

VY z y z out. impll_spec z y z out = behave_spec x y z out (16)

and .

VY z y z out. impl2_spec = y z out = behave_spec x y z out an

demonstrate how a structural specification can be shown through a formal proof to satisfy a behav-
ioral specification. Secondly, several proof steps may be combined into one step. The final point is

that the choice of tactic is determined by the appearance of the theorem.

The two previous proofs were performed using tactics available in an older version of HOL.
The most recent release of HOL was obtained within a week prior to this report. A new library
has been added to HOL that includes a number of new tactics for propositional calculus. One new
tactic, called TAUT_TAC, determines if a theorem is an instance of a tautology of the propositional

calculus. The last proof of

V z y z out. impl2_spec y z out => behave_spec z y z out (18)

will demonstrate its use.

#set_goal([],"!x y z out.
# impl3_spec y z out ==> behave_spec x y z out");;
"!x y z out. impl3_spec y z out ==> behave_spec x y z out"

() : void

#load_library ‘taut‘;;

Loading library ‘taut‘ ...

;; Fast loading file "/usr2/hol/Library/taut/taut_ml.o"
Library ‘taut‘ loaded.

() : void

#expand (REPEAT GEN_TAC THEN REWRITE_TAC[impl3_spec;behave_specl);;
OK..

110




"(out = y /\ "2z) ==>
(x /\ y /\ "z ==> out) /\
(x /\y /\ z ==> ~out) /\
("x /\ "y /\ “z ==> “out)"
() : void
#expand (TAUT_TAC); ;
oK. .
goal proved
I- (out =y /\ "2) ==
(x /\y /\ "z ==> out) /\
(x /\y /\ z ==> “out) /\
("x /\ "y /\ "z ==> ~out)
I- 'x y z out. impl3_spec y z out ==> behave_spec x y z out

Previous subproof:
goal proved
() : void

»

Demonstrated within this section is one formal hardware-verification methodology. In this
case, the behavioral and structural specifications were written in VHDL. In order to prove that
the structural specifications implied the behavioral specification, it was necessary to translate the
VHDL specifications into HOL definitions. The HOL definitions were then used to form theorems.
The theorems were then proven through the use of tactics in HOL. The proof, in each case, formally
verified that the structural specification implied the behavioral specification. This process illustrates

how VHDL descriptions may be compared through HOL.

111




Appendix D. Translating Data Flow to Structure

Introduction

The purpose here is to present plausible mappings between one “style” of VHDL! to another
“style” of VHDL. By the term “style”, we mean a VHDL description containing VHDL constructs
acceptable to a computer-aided design (CAD) system. Currently, vendor design tools are not
sufficiently sophisticated to accept the entire VHDL language. As such, a vendor will specify a
“style” of VHDL acceptable for their tool which is usually a subset of the VHDL language. This is

the same for vhdi2ges (Dukes 91b).

A Prolog-parser called vhdl_parser® is used to generate a Prolog intermediate form of the
VHDL model to be translated. The translated intermediate form is translated back to VHDL using
the pretty-printer, write_vhdl_design_units/4, included in vhdlparser. The Quintus® Prolog

environment is used.

The Overall Translation Process There are three translations being performed. The
first translation takes a VHDL description and generates a Prolog-intermediate form as defined by
vhdl_parser. The second translation involves applying a mapping from one VHDL construct (as it is
represented in the Prolog-intermediate form) to another VHDL construct (the goal of this project).
In essence, a Prolog-intermediate form is generated from another Prolog-intermediate form. The

final translation generates a VHDL description from the Prolog-intermediate form.

Assumptions There are a few assumptions concerning what is acceptable. The first as-
sumption is that the VHDL provided to vhdl_parser is correct VHDL. One method of determining

the correctness of the VHDL model is to have it analyzed through Zycad* VHDL. Another assump-

1VHDL as defined by the IEEE std 1076-1987 VHDL Language Reference Manual, hereafter called LRM.
2Copyright 1990 by the Microelectronics Center of North Carolina (Reint 90)

3Quintus and Quintus Prolog are trademarks of Quintus Computer Systems, Inc.

4Zycad VHDL is a trademark of Synopsis, Inc.

112




tion is that vhdlparser works correctly. Oddly, some errors have been uncovered with vhdi_parser;

however, we need this for a small “sanity check.”

The purpose of this section is to present an overview of the Prolog-intermediate form used
to represent VHDL models. The Prolog-intermediate form is generated from a VHDL model using
vhdl_parser. 'L he documentation accompanying the vhdl_parser did not include a description of
the Prolog-intermediate form. Therefore, this chapter should be helpful to others trying to use

vhdl parser.

The basic Prolog representation for a VHDL model is design_unit/2. The first term of
design._unit/2 is a description of the library or package dependencies for the particular design
unit under consideration. No detailed understanding of the first term is required, but is mentioned

only for completeness.

The second term of design_unit/2 is of great importance, since it holds the Prolog-inter-
mediate form for a package, package body, entity, configuration, or architecture. The

configuration is not directly related to this project.

The entity The format for an entity is the following.

design _unit(Use,entity(EntityName,Generics,PortMap,Declarations,EntityBody)).

The terms and types of entity /5 are shown in Table 4. For the following VHDL model of an entity,

entity full_part is
generic(constant tPLH : time);
port(a,b : in bit;

c : out bit);
attribute loc:integer;
begin

process (b)
begin

assert (a = ’0’);
end process;
end full_part;

113




the following Prolog-intermediate form results

design_unit(
3.
entity(
full_part,
C
interface_element(constant, [tplh],null,
vhdl_subtype(null,time,null),null,null)
1,
C
interface_element(null, [a,b],in,vhdl_subtype(null,bit,null),null,null),
interface_element(null, [c],out,vhdl_subtype(null,bit,null),null, null)
1,
[attribute_declaration(loc,integer)],
[
vhdl_process(
null,
[b]’
n.
[assert(expr(a,=,char(48)),null,null)] )
In.

Table 4. Terms and Types of entity/5

Terms Types
EntityName atom
Generics list.of_interface_elements
PortMap list_of_interface.elements
Declarations list_of_declarative_objects
EntityBody | list_of_concurrent_statements

The architecture The format for an architecture is the following.

arch(ArchitectureName,Entity¥ame,Delcarations,Archit ectureBody) .

The terms and types of architecture/4 are shown in Table 5. From the following VHDL model

114




architecture full_part of full_part is
signal d : bit;
begin
¢ <= a and b;
end full_part;

the following Prolog-intermediate form is generated.

design_unit(
a,
arch(
full_part,
full_part,
[
object_declaration(
signal, [d],vhdl_subtype(null,bit,null),null,null)
1,
(
csas(
null,
csa(
<,
null,
null,
[
wave(
[
event (expr(a,and,b),null)
]’
null )
I»n
1N,

Table 5. Terms and Types of architecture/4

Terms Types
ArchitectureName atom
EntityName atom
Declarations list_of_declarative_objects
ArchitectureBody | list.of concurrent_statements

115




The package The format for a package is the following.

package(PackageName,Delcarations).

The terms and types of package/2 are shown in Table 6. From the following VHDL model

package Functions is
type opcode is (oct0, octl, oct2, oct3, oct4, octh, oct8, oct7);
function mnemonic (bit_pattern : in opcode) return integer;

procedure mnemonic (bit_pattern : in opcode;answer : out integer);

end Functions;

the following Prolog-intermediate form is generated.

116




design_unit(
0,
package(
functions,
C
vhdl_type(opcode, [oct0,0ct1,0ct2,0ct3,0ct4,0¢ct5,0ctB,0ct7]),
sub_program(
sub_spec(
mnemonic,
C
interface_element(
null,
[(bit_pattern],
in,
vhdl_subtype(null,opcode,null) ,null,null)
]l
integer ),
null ),
sub_program(
sub_spec(
mnemonic,
[
interface_element
null,
[bit_pattern],in,
vhdl_subtype(null,opcode,null),
null,
null ),
interface_element (
null,
(answer],out,
vhdl_subtype(null,integer,null),
null,
null )
].
null ),
null )
In.

Table 6. Terms and Types of package/2

Terms Types
PackageName atom
Declarations | list_of_declarative_objects

17




The package body The format for a package body is the following.

package_body(PackageName,Delcarations).

The terms and types of package body/2 are shown in Table 7. From the following VHDL model

package body functions is

function mnemonic (bit_pattern : in opcode) return integer is

variable a,b,c :

begin
a:=b

+C;

integer; -- just for noise

case bit_pattern is

when
when
when
when
when
when
when
when

octO
octl
oct2
oct3
oct4
octh
octé
oct?7

end case;
end mnemonic;

=>

return(a);

return(a+b);
return(a+c);
return(a+a);
return(b+c);
return(b+b);
return(c+c);
return(b);

procedure mnemonic (bit_pattern : in opcode;answer : out integer) is

variable a,b,c :

begin
a:=b

+c;

integer; -- just for noise

case bit_pattern is

when
when
when
when
when
when
when
when

oct0
octl
oct2
oct3
oct4
octS
octé
oct?

end case;
end mnemonic;

end functions;

=>

ansver := a;
ansver := at+b;
answer := a+c;
answer := a+a;
answer := b+tc;
answer := b+b;
ansver := c+c;
answer := b;

the following Prolog-intermediate form is generated.

118




design_unit(
a,
package_body (
functions,
[
sub_program(
sub_spec(
mnemonic,
[
interface_element(
null,
(bit_pattern],in,
vhdl_subtype(null,opcode,null),
null,
null )
1,
integer ),
program_body(

object_declaration(
variable,
[a,b,c],
vhdl_subtype(null,integer,null),
null,
null )
1,
{
assign(a,expr(b,+,c)),
case(
bit_pattern,
C
vhdl_case([oct0], [return(a)]),
vhdl_case([oct1], [return(expr(a,+,b))]),
vhdl_case([oct2], [return(expr(a,+,c))]),
vhdl_case([oct3], [return(expr(a,+,a))]),
vhdl_case([oct4], [return(expr(b,+,c))]),
vhdl_case([oct5], [return(expr(b,+,b))1),
vhdl_case([oct8], [return(expr(c,+,c))]),
vhdl_case([oct7], [return(b)])
1)
In,
sub_program(
sub_spec(
mnemonic,
C
interface_element(null, [bit_pattern],in,
vhdl_subtype(null,opcode,null),null,null),
interface_element (null, [answer], out,
vhdl_subtype(null,integer,null),null,null)
1,
null ),

119




program_body (

object_declaration(variable,{a,b,c],
vhdl_subtype(null,integer ,null),null,null)
]l
L
assign(a,expr(b,+,c)),
case(
bit_pattern,
C
vhdl_case([oct0], [assign(answer,a)]),
vhdl_case([oct1], [assign(answer,expr(a,+,b))]1),
vhdl_case([oct2], [assign(answer,expr(a,+,c))]),
vhdl_case([oct3], [assign(answer,expr(a,+,a))]),
vhdl_case([oct4], [assign(answer,expr(b,+,¢))]),
vhdl_case([oct5], [assign(answer,expr(b,+,b))]1),
vhdl_case([oct6], [assign(answer,expr{c,+,c))]),
vhdl_case([oct7], [assign(answer,b)])
1)
AND))
10N

Table 7. Terms and Types of package body/2

Terms Types
PackageName atom
Declarations | list_of_declarative_objects

Translating Data Flow to Structure

Analysis of the VHDL Model Data-flow VHDL models express the composition of cir-
cuits at a gate level. Each data-flow statement is a digital-logic expression, representing a result in

terms of the logical composition of its sig.:..'s. An example of a data-flow statement is

architecture data_flow of example is
signal a,b,c,d : bit;
begin
a <=Db and ¢ or d;
end data_flow;

120




A data-flow statement also contains implicit properties. One such property is a signal connecting
the result of b and ¢ to the following or operator. An equivalent structural VHDL construction

would look like

architecture structural of example is
signal a,b,c,d : bit;
signal internal_signal : bit;
component and_gate
port(a,b : im bit;
¢ : out bit)
end component;
component or_gate
port(a,b : in bit;
¢ : out bit)
end component;
begin
and_gate : and_gate
port map(b,c,internal_signal);
or_gate : or_gate
port map(internal_signal,d,a);
end structural;

Another implicit property of the data-flow statement is that all logical connectives are binary
operators except for the NOT operator. NOT is an unary operator. In consideration of the lan-
guage operators, AND, OR, NAND, NOR, XOR, and NOT, we need only consider implicit
signal declarations and six different components declarations. There are then two requirements for
translating data-flow VHDL models to structural models. Implicit internal signals must be gener-
ated, declared, and placed. Secondly, the necessary components must be declared and instantiated

with the correct interconnecting signals.

In order to analyze the Prolog-intermediate form generated for a full VHDL description of a

data flow model, we will choose a description of a full adder, shown below.

121




entity full_adder is
port (A,B,Cin : in bit;
Sum,Carry: out bit);
end full_adder;
architecture data_flow of full_adder is
signal interml : bit;

begin

interml <= a xor b;
sum

A
]

interml xor cin;
carry <= (a and b) or (a and cin) or (b and cin);

end data_flow;

The Prolog-intermediate form generated for the entity is the following.

design_unit(
a,
entity(
full_adder,
null,
{
interface_element(null, [a,b,cin],in,
vhdl_subtype(null,bit,null) ,null,null),
interface_element(null, [sum,carry],out,
vhdl_subtype(null,bit,null),null,null)
]l
0,
0.

The Prolog-intermediate form generated for the architecture is the following.

design_unit(
a,
arch(
data_flow,
full_adder,
4
object_declaration(signal, [intermi],

vhdl_subtype(null,bit,null),null,null)
1,
C

122




csas(

null,
csa(
intermi,
null,
null,
L
wave(
o
event(
expr(a,xor,b),
null)
1,
null )
1),
csas(
null,
csa(
sum,
null,
null,
[
wave(
L
event (
expr(interml,xor,cin),
null )
1,
null )
1)),
csas(
null,
csa(
carry,
null,
null,
[
wave(
[
event (
oxpr(
expr(
expr(a,and,b),
or,
expr(a,and,cin) ),
or,
expr(b,and,cin) ),
null )
]t
null )
1))

123




In.

From the Prolog-intermediate form, we are interested in two items. The first is the explicit
signal declarations in the entity and architecture. The second item is the expression trees formed by
the concurrent signal assignment statements. Figure 27 shows the three expression trees formed by

the three concurrent signal assignment statements from architecture data_flow of full_adder.

interm1
carry
K t
a b /\
or and
/\
and and b cin
sum
f a b a cin

r

interm1 cin

Figure 27. Expression Trees from Concurrent Signal Assignment Statements.

Generating Structural VHDL The Prolog written to translate from data-flow VHDL to

structural VHDL generated the following result.

-- VHDL DESIGK UNIT #1
entity full_adder is
port
(a, b, cin:in bit;
sum, carry:out bit);

end full_adder;
~- VHDL DESIGN UNIT #2

architecture sic_data_flow of full_adder is

124




component not_gate generic
(constant tplh:time := 0 ns;
constant tphl:time := 0 ns);

port
(a:in bit;
b:out bit);

end component ;
for all : not_gate
use entity work.inv(inv)
component xor_gate generic
(constant tplh:time := O ns;
constant tphl:time := 0 ns);
port
(a, b:in bit;
c:out bit);
end component ;
for all : xor_gate
use entity work.xor_gate(xor_gate)
component or_gate generic
(constant tplh:time := O ns;
constant tphl:time := 0 ns);
port
(a, b:in bit;
c:out bit);
end component ;
for all : or_gate
use entity work.or_gate(or_gate)
component and_gate generic
(constant tplh:time := O ns;
constant tphl:time := O ns);
port
(a, b:in bit;
c:out bit);
end component ;
for all : and_gate
use entity work.and_gate(and_gate)
signal map_d2s0:bit;
signal map_d2si:bit;
signal map_d2s2:bit;
signal map_d2s3:bit;
signal map_d2s4:bit;
signal interml:bit;

begin
xor_gate0 : xor_gate generic map
(0 ns, 0 ns)
port map

(a, map_d2s0, intermi)

125




not_gate0 : not_gate generic map
(0 ns, 0 ns)
port map
(b, map_d2s0)
xor_gatel : xor_gate generic map
(0 ns, 0 ns)
port map
(interm1, cin, sum)
or_gate0 : or_gate generic map
(0 ns, O ns)
port map
(map_d2si, map_d2s2, carry)
or_gatel : or_gate generic map
(0 ns, 0 ns)
port map
(map_d2s3, map_d2s4, map_d2si)

and_gate0 : and_gate generic map
(0 ns, 0 ns)

port map
(a, b, map_d2s3)

and_gatel : and_gate generic map
(0 ns, 0 ns)

port map
(a, cin, map_d2s4)

and_gate2 : and_gate generic map
(0 ns, 0 ns)

port map
(b, cin, map_d2s2)

end sic_data_flow;

From the structural VHDL code, the following may be noticed. The correct component declarations
were made only for those components to be instantiated. Declaring components that are not
instantiated later can cause errors for some VHDL design systems. The correct signals were declared
for the implicit signals in the data-flow model. Lastly, all of the components were instantiated for

those operators in the data-flow model.

126




Limitations and Features Currently, the translator does not handle signals declared
through the alias keyword. Furthermore, the translator has not been adapted to consider bit_vector
signals. Other nondata-flow constructs in the architectural body of the VHDL model under con-
sideration are not touched. Therefore, sequential data-flow statements within a process are not

translated.

Since a VHDL model may have component instantiations mixed with data-flow statements,
passing nondata-flow language constructs through untouched would yield the benefit of deriving a
fully structural model from a mixed data-flow/structural VHDL model. Handling bit_vectors was
also not considered in this step since it could be handled by another translation step. Therefore,

the translation from data-flow to structure could be kept simple.

Running d2s

d2s is tested through the use of the make utility in much the same manner as case2if. This
is to help reduce the number of keystrokes necessary to accomplish the task of building d2s and
testing it. Dependencies are set up for all test cases so that if d2s has not been built, it will be
automatically before testing. The expected results are kent in a directory called data. Thus, the
Unix diff utility may be used to compare the actual output of d2s with the expected in each test

case.

The two test cases were derived in this fashion. d2s was written first. The VHDL models
generated by d2s were then analyzed and simulated for comparison against the original model. The

two results are placed in the directory called data.

The procedure for logging into VERIFY.EL.WPAFB.AF.MIL and running the test cases is

the same as for case2if. The two test cases are explained below.

cldata This test case is a VHDL model of a full adder described using concurrent signal assignment

statemnents.

127




form7 This test case is a model of a seven-input parity generator. The components were arranged
in such a fashion to provide as large a concurrent signal assignment statement as possible.

Included in this VHDL model is a process statement.

128




Prolog Code for d2s

WARRAIIAI IR ARSI R IR I IR IR DL DRARARIAIRI IR ARRRRARAAARAI LA ARLI L L LLA%
PANAAN AN AN NAANN YA AN A SN A NN AN NANAANNAAN NI IS S N RIS AR AR A A ANAAN NS Sy Yy
%

% d2s/1 is a Prolog routine to convert a VHDL model

% with data flow constructs to an equivalent VHDL model

% with component instantiations. d2s/1 calls upon vhdl_read/1
% of vhdl_parser to parse the original VHDL model.

% The expression trees formed by the VHDL concurrent

% signal assignment statements are used to generate the

% necessary implicit signal declarations as well as

% components. Finally, the new VHDL model is generated through
% write_vhdl_design_units/4 using a pretty-printer

% supplied in vhdl_parser.

%

% Limitation: In order to ensure all signal declarations are

% available for use, an entity with its respective

% architecture must exist in the one VHDL file supplied.

%

% d2s/1 must be loaded into vhdl_parser! The command is
%4

% % vhdl_parser

%

% Quintus Prolog Release 2.4 (VAX, Ultrix 2.0-2.2)

% Copyright (C) 1988, Quintus Computer Systems, Inc. All rights reserved.

% 1310 Villa Street, Mountain View, Califormia (415) 965-7700

%

% | ?- compile(d2s).

%

Aftervards, save the executable image in the following manner...
| ?- save(d2s).

Execute by the following:

| 7- d2s(f00).

Several tables are built in memory.

signal_name(Name). So we don’t have duplicate
signal names.

expression_tree(ResultName,Tree). Where the data_flow statements
are stored.

comp_table(Name,Num) . Components to be declared.
And number instantiated.

T PR R L ST AT ST SR SR SR T T ST L SR ST T R R

129




% new_signal_name_num(Num). Number of how many signal

% names have been generated.
% new_signal_name(Name). Name of new signal
d2s(File) :-

vhdl_read(File,DesignUnits),
map_d2s(DesignUnits,NewDesignUnits),
tell(’outfile.vhd’),
write_vhdl_design_units(NewDesignUnits,0,L,[]),
write_list(L,0),

told.

WRRRRRRRARIRAA R IIIRI AR AR R RARUARI IR DA ARAAAIAAAL LI AARL AL IR ALK,
PN NSNS N YA N N Sy AN A NN AN Y AN A AN YA S AN NS N AN AN Y Y YA AR A A Y )

%
% test/2 was supplied for testing purposes.

test(
(design_unit(Use,entity(EntityName,Generic,Port,EntityDecl,EntityBody)),
design_unit(Use,arch(ArchName ,EntityName,ArchDecl,ArchBody))],
[design_unit(Use,entity(EntityName,Generic,Port,EntityDecl,EntityBody)),
design_unit(Use,arch(ArchName ,EntityName,NewArchDecl,NewArchBody))]) :-
'
map_d2s_build_signal_name_table(Port),
map_d2s_build_signal _name_table(ArchDecl),
map_d2s_build_expression_tree_table({ArchBody,NewArchBody),
map_d2s_generate_new_signals(Signals),
append(Signals,ArchDecl,NewArchDecl).

130




PAAAANIAANA NN AN AN SN N AN AN SN AN AN Y ANA NS AN VAN N AN AN NN NN NSNS YA AN YA LS
PIAAANA TS S S Y AN A NS SN I A S Y YA AN NS NSNS Y AN AN YA ANN Y YA N A A YA A AN A Y2

%
% map_d2s/2 main driver routine for breaking out the signal
% names and expression tree with the VEDL entity and
% architecture pair. Signal tables are built from
4 the entity and architecture. Components are contructed
% from the expression trees formed by the concurrent
% signal assignment statements. If the one entity
% and architecture rule is not adhered to, a warning
% is issued.
map_d2s(
[design_unit(UseE,entity(EntityName,Generic,Port,EntityDecl,EntityBody)),
design_unit(UseA,arch(ArchName,EntityName,ArchDecl,ArchBody))],
{design_unit(UseE,entity(EntityName,Generic,Port,EntityDecl,EntityBody)),
design_unit(UseA,arch(ArchName,EntityName,NewArchDecl,NewArchBody))]l) :-
]
Ty
map_d2s_build_signal_name_table(Port),
map_d2s_build_signal_name_table(ArchDecl),
map_d2s_build_expression_tree_table(ArchBody,NewArchBody),
map_d2s_generate_new_signals(Signals),
map_d2s_generate_new_comps(Comps),
append(Signals,ArchDecl,IntermArchDecl),
append(Comps, IntermArchDecl,NewArchDecl).
map_d2s(_,_) :-

vrite(’Please place one entity and its associated’),nl,
vrite(’architecture in one file before rerunning’),nl,
vrite(’d2s/1.*),nl,

fail.

131




WARR AR IR AR LI IR R I IARAAI AR I IR AIRRAAA A ARSI IR DA DDA RAALA ALY
TRARAARI AL AT IAA AT AIRIA AL L IARLIAA LB I AI LR RARIAAI SRR RIRALAAALLARL
%

% map_d2s_generate_new_comps/1 is used for building component

% declaration in the declarative region of the architecture.

map_d2s_generate_new_comps ([

vhdl_comp(
not_gate,
C

interface_element{constant, [tplh],null,
vhdl_subtype(null,time,null),null,vhdl_assign(pl(o,ns))),
interface_element(constant, [tphl] ,null,
vhdl_subtype(null,time,null),null,vhdl_assign(pl(0,ns)))
]’
[
interface_element(null, [a],in,
vhdl_subtype(null,bit,null),null,null),
interface_element(null, [b],out,
vhdl_subtype(null,bit,null),null,null)
1),
vhdl_spec(spec(all,not_gate),binding(entity_aspect(
vhdl_name(prsfix(work),inv),
inv ),
null,
null )) | Compsl) :-

retract(comp_table(not,_Num)),
]

map_d2s_generate_new_comps (Comps).
map_d2s_generate_new_comps( [
vhdl_comp(
GateName,
{
interface_element(constant, (tplh],null,
vhdl_subtype(null,time,null),null,vhdl_assign(pl(0,ns))),
interface_element(constant, [tphi],null,
vhdl_subtype(null,time,null),null,vhdl_assign(pl(0,ns)))
]l
C
interface_element(null, [a,b],in,
vhdl_subtype(null,bit,null),null,null),
interface_element(null, {c],out,
vhdl_subtype(null,bit,null),null,null)
1),
vhdl_spec(spec(all,GateName) ,binding(entity_aspect(
vhdl_name(prefix(work),GateName),
GateName ),
null,
null )) | Comps]) :-

retract(comp_table(Name, Num)),

132




name(’_gate’,Suffix),

name (Kame,Prefix),

append(Prefix,Suffix,GateNameList),

name(GateName,GateNameList),

map_d2s_generate_new_comps(Comps).
map_d2s_generate_new_comps([]).

PYAN NS Y AN AN S AN AN VAN Y YA YA A N AN N YA NS AR YN AA AN AN YA AN A AN Y A
LYY AN NN AN Y NN AN Sy NN A NS N AN NSNS AN AN S S AN NN Y YA AN N A Y Y NN AN A )
%

% map_d2s_generate_new_signals/1 is used for generating a list
% of signal declarations for the newly formed signals.

% The signal declarations are placed in the delcarative

% region of the architecture.

map_d2s_generate_new_signals(
[object_declaration(signal, [Name],
vhdl_subtype(null,bit,null), null,null)|ObjDeclList]) :-

retract(new_signal name(Name)),

map_d2s_generate_new_signals(ObjDeclList).
map_d2s_generate_new_signals([]).

map_d2s_build_signal_name_table(
[interface_element(_sig,Siglist,_mode,
vhdl_subtype(null,bit,null),null,null)|SignalNames]) :-
map_d2s_build_signal_name_list_table(SigList),
!
map_d2s_build_signal_name_table(SignalNames).
map_d2s_build_signal_name_table(
(object_declaration(_sig,SigList,
vhdl_subtype(null,bit,null),null,null)|SignalNames]) :-
map_d2s_build_signal_name_list_table(SigList),
]
map_d2s_build_signal_name_table(SignalKames).
map_d2s_build_signal_name_table([_DeclItem|SignalNames]) :-

map_d2s_build_signal_name_table(SignalNames).
map_d2s_build_signal_name_table([]).
map_d2s_build_signal_name_table(null).

133




ANNANARA AN AN A YA NN NSNS AN NS AAN AN AN ANS SN A NSNS SN S AN A AR A S AN A A
Y YANAA S NN N S NN RN YA A VA A SN S AN NSNS AA S AN A S NSNS SA N YIS A YA S YA A AN AAA
%

% map_d2s_build_signal_name_list_table/1 builds a table of

% declared signals. The table is used to keep track

% of signals that are already declared.

map_d2s_build_signal_name_list_table([Signal|SigList]) :-
assert(signal_name(Signal)),
t

map_d2s_build_signal_name_list_table(SigList).
map_d2s_build_signal_name_list_table([]).

VYN ANy Yy YA YYNS Y YANANAA AN SN Yy A AN AN YA Y YIS A AN AN AN NSNS A A
YN NN NN NN AN NN NN Yy Ny Yy Y YN N AN AN Y NN Y YA NN NAN NS Y YN YA A NS YA A NS YA NS
%
% map_d2s_build_expression_tree_table/2 builds a list of

A component instantiations to be placed in the architecture
% body.

map_d2s_build_expression_tree_table(
(csas(Trans,Csa) | ArchBody],NewArchBody) :-
map_d2s_convert_csaas_to_comp(csas(Trans,Csa),CompInst),

]
map_d2s_build_expression_tree_table{ArchBody,InterArchBody),
append(CompInst,InterArchBody,NewArchBody).

map_d2s_build_expression_tree_table(

[Head | AxrchBody] , [Head | NewArchBody]) :-

map_d2s_build_expression_tree_table(ArchBody,NewArchBody).
map_d2s_build_expression_tree_table([],[]).

PYARIIANYANS AN NS NN Y AR VAN NN YA N SN YA AN AN YA AN NN S IS NSV A S YA Y YA YA
WARTIAARIAR T AN IAAI LRI LI L LIIRTILLAIIIRIARIAIIATIRERILLARRIAIRIAIT,
%

% map_d2s_convert_csas_to_comp/2 is used for breaking down

% an expression tree.

map_d2s_convert_csas_to_comp(
csas(null,csa(SignalName,null,null, [(wvave([event(Expr,null)],null)l)),
CompInstList) :-
map_d2s_convert_expr_to_comp(SignalName ,Expr,CompInstList).

134




VAN YN NS NN SN S NN S SN S NS NN Y YNNI NS AN AN S YN AR YA A Y YA
WIIUI TSI BT I IIT I I DA T I T L Tl T Tl ot Tk T Tt Tl T T Tt Lo T T T Lo T AL T DAL Lo T e
%

% map_d2s_convert_expr_to_comp/2 is where the component is

% derived from an expression.

map_d2s_convert_expr_to_comp(

SignalName,

expr (0Opr,SignalNameR),

[comp_instant(CompInstName, CompName,
[element(null,pl(0,ns)),element(null,pl(0,ns))],
[element (null,SignalNameR),
element (null,SignalName)])] ) :-
atom(SignalNameR),!,
map_d2s_get_comp_name_inst (Opr,CompInstName,CompName),
1

map_d2s_convert_expr_to_comp(

SignalName,

expr (Opr,Expr),

[comp_instant(CompInstName,CompName,
[element(null,pl(0,ns)),element (null,pl(0,ns))],
[element(null,SignalNameR),
element(null,SignalName)])|CompListR] ) :-

]
map_d2s_get_comp_name_inst (Opr,CompInstName,CompName),
map_d2s_gen_signal_name(SignalKameR),
map_d2s_convert_expr_to_comp(
SignalNameR,
Expr,
CompListR),
]
map_d2s_convert_expr_to_comp(

SignalName,

expr(SignalKameL,Opr,SignalNameR),

[comp_instant(CompInstName,CompName,
[element(null,pl(0,ns)),element(null,pl(0,ns))],
(element(null,SignalNameL),element(null,SignalNameR),

element(null,SignalName)])] ) :-
atom(SignalWNamelL),
atom(SignalNameR),!,
map_d2s_get_comp_name_inst (Opr,CompInstName,CompName),
'
map_d2s_convert_expr_to_comp(
SignalName,
expr (Expr,0Opr,SignalNameR),
{comp_instant(CompInstName,CompName,
[element (null,pl(0,ns)),element (null,pl(0,ns))],
[element (null,SignalNamelL),element(null,SignalNameR),
element (null,SignalName)]) |CompListL] ) :-
atom(SignalNameR),!,
map_d2s_get_comp_name_inst (Opr,CompInstName,CompName),

135




map_d2s_gen_signal_name(SignalNamel),
map_d2s_convert_expr_to_comp(
SignalNameL,
Expr,
CompListL),
]
map_d2s_convert_expr_to_comp(
Signallame,
expr(SignalNameL ,Opr,Expr),
{comp_instant(CompInstName,CompName,
[element (null,pl(0,ns)),element(null,pl(0,ns))],
[element(null,SignalKameL),element(null,SignalNameR),
element(null,SignalKame)]) |CompListR] ) :-
atom(SignalKamel),!,
map_d2s_get_comp_name_inst (Opr,CompInstKame,CompHame),
map_d2s_gen_signal_name(SignalNameR),
map_d2s_convert_expr_to_comp(
SignalNameR,
Expr,
CompListR),
'
map_d2s_convert_expr_to_comp(
SignalName,
expr (ExprL,Opr,ExprR),
[comp_instant(CompInstKame,CompName,
[element(null,pl(0,ns)),element(null,pl(0,ns))],
[element(null,SignalNameL),element(null,SignalNameR),
element(null,SignalName)]}) |CompList] ) :-
map_d2s_get comp_name_inst (Opr,CompInstName,CompName),
map_d2s_gen_signal_name(SignalNameL),
map_d2s_gen_signal_name(SignalNameR),
map_d2s_convert_expr_to_comp(
SignalNameL,
ExprL,
CompListlL),
map_d2s_convert_expr_to_comp(
SignalNameR,
ExprR,
CompListR),
append(CompListL,CompListR,CompList),
1

136




UYA AN N AN SN NN NS AN NSNS Y AN Y YA YA Y AN Y NN AR SN NS TN YA A4 A
VYA NN SN NSNS AN SN AN AN YA NN A N NN SIS YA S NS Y NSNS NS YA YA N YA A
%

% map_d2s_gen_signal_name/1 builds a table of newly created

%4 signals. The table is to be used for reconstructing

%4 the declarative region of the architecture later.

map_d2s_gen_signal_name(SignalName) :-

retract(new_signal_name_num(Num)),

[]
’

name (Num,NumList),
name(map_d2s,NameList),
append(NameList ,NumList,SigNameList),
name (TmpSigName,SigNameList),
map_d2s_return_good_name(Num, TmpSigName,IntNum,SignalName),
NewNum is IntNum + 1,
assert(new_signal_name(SignalName)),
assert(new_signal_name_num(NewNum)),!.
map_d2s_gen_signal_name(SignalName) :-
name (0,NumList),
name (map_d2s,NameList),
append(NameList ,NumList,SigNameList),
name(TmpSigName,SigNameList),
map_d2s_return_good_name(0,TmpSigName,IntNum,SignalName),
NewNum is IntNum + 1,
assert(new_signal_name(SignalName)),
assert(new_signal_name_num(NewNum)),!.

LYY AN A AN AN S YA A N S YA AN YA YA Y Y A ANA SN A NS Y AN TS AT AAA S
VAN ANy Y YAy Y YN AN AN AN YA Y SN YA NN AN A Sy Y Y YA AN AN AN A Y YA Y A
%

% map_d2s_return_good_name/4 is used to ensure that a newly

% created signal name doesn’t already exist.

map_d2s_return_good_name(Num, TmpSigName,NewKum,SignalName) :-
signal_name(TmpSigName),
]
IntBum is Num + 1,
name (map_d2s,NameList),
name (Int¥um, IntNumList),
append (NameList,IntNumList,IntSigNameList),

name{IntSigName,IntSigNameList),

map_d2s_return_good_name(IntNum,IntSigName ,NewNum,SignalName).
map_d2s_return_good_name(Num,SigName,Num,SigName).

137




VYN YA ATy Y AN Y S Y YN AN Y YA SN AN S ARSI AR AN S AN A TN YA A A S
VAN YA Y SIS SN AA NSNS Y SN SN A NN A Y YA YNNI NS SAN AN NSNS YRS AN Y A A4S
%

% map_d2s_get_comp_name_inst/3 is used to generated component

% labels in the archtecture body.

map_d2s_get_comp_name_inst(Opr,CompInst¥ame,CompKame) :-

retract(comp_table(Opr,¥um)),
[}

ta

name(Opr ,GateName),

name(’_gate’ ,Extension), %I know this looks inefficient
%but I want this to work on
%ANY machine.

append(GateName,Extension,CompNameList),

name (CompName ,CompNameList),

name (Num,NumList),

append (CompNameList ,NumList,CompInstNameList),

name (CompInstName,CompInstNameList),

NewNum is Num + 1,

assert(comp_table(Opr,NewNum)),!.

map_d2s_get_comp_name_inst (Opr,CompInstName,CompName) :-

name(0Opr,GateName),

name(’_gate’,Extension), %I know this looks inefficient
%but I wvant this to work on
%ANY machine.

append(GateName,Extension,CompNameList),

name (CompName ,CompNameList),

name (0, Num),

append(CompNameList ,Num,CompInstNameList),

name (CompInstName,CompInstNameList),

assert(comp_table(Opr,1)).

IR R T R l t  t t I e L T e T e o T Yot et e e o e e o Yo o e K Y K%
%

% UTILITIES

%

%append([],L,L).

%append ([HIL1],L2,(HIL3]) :-
% append(L1,L2,L3).

Corrections to vhdl_parser

The first correction made to vhdl_parserinvolved the proper differentiation between package

and package body. Originally, vhdl_parser would translate the following VHDL

138




package body functions is

function mnemonic (bit_pattern : in opcode) return integer is

variable ¢ : integer; -- just for noise
begin

return(c);

end mnemonic;

end functions;

to

-- VHDL DESIGN UNIT #1
package functions is

function mnemonic(bit_pattern:in opcode) return integer is

variable c:integer;

begin
return c;

end mnemonic;

end functions;

which produced an invalid VHDL package.
The corrections made to vhdl_parser are shown below.

In the file vhdl.tex, Rule 16 was changed from

vhdl_package_body(package(ID,DIs)) -->
[ package, body ], vhdl_identifier(ID), [ is ],
vhdl_opt_declarative_items(DIs),
[ end ], vhdl_opt_identitier(ID).

to

vhdl_package_body(package_body(ID,DIs)) -->
[ package, body ], vhdl_identifier(ID), [ is ],
vhdl_opt_declarative_items(DIs),
[ end ], vhdl_opt_identitier(ID).

139




In the file vhdl_write.tex, Rule 16 was changed from

write_vhdl_package_body(package(ID,DIs)) ~->
“package body ", write_vhdl_identifier(ID), " is ",
(indent],
write_vhdl_opt_declarative_items(DIs),
[undent],
"end ", write_vhdl_opt_identifier(ID).

to

write_vhdl_package_body(package_body(ID,DIs)) -->
“"package body ", write_vhdl_identifier(ID), ® is ",
{indent],
write_vhdl_opt_declarative_items(DIs),
[undent],
"end ", write_vhdl_opt_identifier(ID).

Another problem encountered with vhdl_parser was the pretty-printing of physical types. For

a line that looks like

6 ns;

the pretty-printed result would look like

éns;

leaving a syntactically-incorrect VHDL model.  In order to correct this problem, Rule 5 in

vhdl_write.tex was changed from

vrite_vhdl_physical_literal(pl(AL,ID)) -->
write_vhdl_abstract_literal(AL),
write_vhdl_identifier(ID).

to

140




write_vhdl_physical_literal(pl(AL,ID)) -->
write_vhdl_abstract_literal(AL)," ",
write_vhdl_identifier(ID).

Uncorrected Problems with vkhdi_parser

Listed in this appendix are errors encountered in vhdl_parser that have not been corrected.

Both errors involve subtleties with special characters and integers.

The first error involves integer representation in vhdl_parser when a bit_vector is intended.
Leading zeros in bit_vectors are dropped due to the conversion to integer during file input with
vhdl_gel_token_line/1. For an input line with 001 as a bit_vector, the resulting representation is

1. The pretty-printed VHDL code will contain a syntax error due to this problem.

The second error involves the use of the quote character, ; in VHDL. The quote character is

essentially dropped. Therefore, an assert statement,

assert (expected

actual) report "conflict" severity error;

is reprinted as

assert (expected = actual)

report conflictseverity error;

causing a syntax error.

Conclusion

The process of translating data-flow to structure was successful in that the resulting VHDL
code yielded the simulation results as the original VHDL code. Separating the d2s from ges allowed

for ease of testing, isolation from changes, and ease of code development. Also worth noting is that

141




a partial data-flow VHDL model will only have the data-flow portion changed by d2s, leaving the

rest of the VHDL model alone.

The errors found in vhdl_parser were noted and fixed as indicated. Not all errors were cor-

rected. The errors remaining to be corrected were not devastating to tool development.

142




Appendix E. Formal Methods

Formal methods are used to provide a systematic basis for specifying, developing, and verify-
ing relations between a specification and an implementation (Wing 90b:8). Some of the relations or
properties examined by formal methods may include, but are not limited to, equivalence, implica-
tion, reliability, safety, liveness, consistency, or completeness. Some formal methods familiar to the
design engineer involved in VLSI design include design-rule checking, synthesis, silicon compilation,
and petri nets. These formal methods have a mathematical basis; however, methods that involve

ad hoc simulation are not considered formal.

Logic extraction is a formal method that is used to verify the equivalence between a component
netlist and a VHDL structural description. The VHDL description 1s the structural specification
and the component netlist represents the layout specification!. Furthermore, logic extraction may
also be used to examine configuration properties (i.e., design rule checks), reliability properties,

and temporal properties of a digital circuit.

To help show that logic extraction is a formal method, we will use the notation

'ka

(Duffy 91:31-34,43-54) where T is a set of assumptions or axioms and « is the theorem to be proved.

I sets the context for proving the theorem a. Another way of expressing I' I « is

NMA. AT = a

where each v; € T'and 1 <i < n.

YA transistor netlist is extracted from the layout specification using already-existing CAD tools.

143




Various rules of inference may be used to demonstrate that a follows from I'. One inference
rule is the rewrite rule. With respect to I' I a, a rewrite rule applies a replacement in a specified
by some ¥;. The replacement is not necessarily always a reducing one. For 4; to be used as the
basis for a rewrite, 7; must be in the form ¢t = t’. A replacement occurs through a rewrite in o

when some expression of « is in the form of 2. For the formula

(C=AAB) - C=> AVB

a rewrite would result in

(C=AAB) F (AANB)=(AVB).

By the definition of I'  a the formula may be rewritten as

(C=AAB),A, B+ AVB

which yields®

(C=AAB),A,B+ TVRHB

and finally

(C=AAB),AB + T.

In a logical sense, logic extraction may be viewed as

Ezxtraction Rulest Layout Specification < Structural Specification

2The choice of matching t and replacing with t’ versus matching t’ and replacing with ¢ is inconsequential provided
the matching is done to prevent an infinite matching/replace cycle.

3T is used to denote logical true. Each v, is assumed true; therefore, everywhere that an expression in o matches
a v,, T is substituted for the expression.

144




where EzxtractionRules form the context I' of o, the Layout Specification is represented by a
component netlist, and the StructuralSpecification is the top-level component represented by the

specification. Further Layout Specification & Structural Specification is the theorem a.

As an example, consider the following.

(e1(X,Y)Aca(X,Y) = c3(X,Y)),
(ca(X,Y)Aca(Y,Z2) =c5(X,Y,2Z)) F (ci(a,b) Aca(a,d) Acsa(d,c)) ¢ cs(a,b,c) (19)

(c1(X,Y)AcX,Y) = c3(X,Y)),
(e3a(X, YIYAes(Y,Z2) =¢5(X,Y,2)) F (ca(a,b) Acs(d,c)) € cs(a, b, c) (20)

(c1(X,Y)Ac(X,Y) = c3(X,Y)),
(ca(X, VYA u(Y,Z2) =e5(X,Y,2)) b es5(a,b,c) ¢ cs(a,b,c) (21)

In Eq 19, the EzxtractionRules are listed as the assumptions concerning the environment of the
proof. Also included is a list of the components from the LayoutSpecification. Iu Eq 20, a rewrite
of the LayoutSpeci fication has been applied from the assumption list. The derivation in Eq 20
gives a new representation of the LayoutSpeci fication, but not in a form readily provable. Finally,
in Eq 21, another rewrite of the LayoutSpecification is performed from the list of assumptions.

The final result is readily proven true.

A discussion on the basis of formal methods may be found in (Wing 89), (Wing 90a), and
(Wing 90b). Further information on formal methods may also be found in (MacLe 90:52-61),

(Beth 62), (Ramsa 91), (Schar 88), and (Gordo 88).

145




[Barr 81]
[Barro 84]
[Beth 62]

[Boehn 88]

[Boole 54)
[Boyer 79]
[Bratk 86]
[Brown 90]

[Bryan 87]

(Calif 86]

[Camil 86]

[Camur 88]

[Clock 87a]
(Clock 87b)

[Cousi 86]
[deGeu 89]

[Devad 88]

Bibliography

Barr, A. and E. A. Feigenbaum. The Handbook of Artificial Intelligence, Vol. 1. Los
Altos: William Kaufman, Incorporated, 1981.

Barrow, Harry G. “VERIFY: A Program for Proving Correctness of Digital Hard-
ware Designs,” Artificial Intelligence, 24: 437-491 (1984).

Beth, Evert W. Formal Methods. New York: Gordon and Breach Science Publishers,
Incorporated, 1962.

Boehner, M. “LOGEX - An Automatic Logic Extractor from Transistor to Gate
Level for CMOS Technology,” Proceedings of the IEEE/ACM Design Automation
Conference. 517-522. New York: IEEE Press, 1988.

Boole, George. An Investigation of the Laws of Thought. Originally published in
1854 by Macmillan, London. Reprinted by Dover Publications in 1958.

Boyer, Robert S. and J. Strother Moore. A Computational Logic, Orlando: Academic
Press, 1979.

Bratko, Ivan. Prolog Programming for Artificial Intelligence, Reading: Addison-
Wesley Publishing Company, 1986.

Brown, Frank Markham. Boolean Reasoning. Boston: Kluwer Academic Publishers,
1990.

Bryant, Randal E. “A Methodology for Hardware Verification Based on Logic Sim-
ulation,” Computer Science Department, Carnegie Mellon University, Pittsburgh,
Pennsylvania 15217, ARPA Order Number 4976, (8 June 1987).

California, University of, at Berkeley. Berkeley Distribution of Design Tools. Com-
puter Science Division, EECS Department, University of California at Berkeley,
1986.

Camilleri, Albert, Mike Gordon, and Tom Melham. Hardware Verification Using
Higher-Order Logic. Technical Report No. 91, University of Cambridge Computer
Laboratory, Corn Exchange Street, Cambridge CB2 3QG, England, September 1986.

Camurati, Paclo and Paolo Prinetto. “Formal Hardware Verification of Hardware

Correctness: Introduction and Survey of Current Research,” Computer, 21:7 8-19
(June 1988).

Clocksin, W. F. “Logic programming and Digital Circuit Analysis,” The Journal of
Logic Programming, 4:1 59-82 (March 1987).

Clocksin, W. F. and C. S. Mellish. Programming in Prolog. New York: Springer-
Verlag, 1987.

Cousineau, G., G. Huet and L. Paulson. The ML Handbook. INRIA, 1986.

de Geus, Aart J. “Logic Synthesis Speeds ASIC Design,” IEEFE Spectrum, 26:8 27-31
(Angust 1989).

Devadas, Srinivas, Hi-Kueng Tony Ma, and Alberto Sangiovanni-Vincentelli. “Logic
Verification, Testing and their Relationship to Logic Synthesis,” Testing and Diagno-
sis of VLSI and ULSIF. Lombardi and M. Sami, eds., Kluwer Academic Publishers,
181-245 (1988).

146




[Donne 68)
[Duffy 91]

[Dukes 88]

[Dukes 90a)

[Dukes 90b)

[Dukes 90c]

[Dukes 91a]

[Dukes 91b)

[Dukes 91¢]

[Ebeli 83]

(EIA 89

[Fujiw 85)
[Galto 87)
[Gordo 87]

[Gordo 88]

[Gordo 89]

Donnellan, Thomas. Lattice Theory. Oxford: Pergammon Press, Ltd., 1968.

Duffy, David A. Principles of Automated Theorem Proving. Chister: John Wiley
and Sons Ltd., 1991.

Dukes, Captain Michael A. A Multiple- Valued Logic System for Circuit Extraction
to VHDL 1076-1987. MS thesis, AFIT/GE/ENG/88S-1. School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB OH, September 1988
(AD-A202646).

Dukes, Michael Alan and Frank Markham Brown. Proving Boolean Fquivalence with
Prolog. January 1989-February1990. WRDC Technical Report, WRDC-TR-90-5006
Wright Research and Development Center, Wright-Patterson AFB OH, February
1990.

Dukes, M. A., F. M. Brown, and J. E. DeGroat. “A Generalized Extraction System
for VLSI,” VHDL Melhods Workshop. Center for Semicustom Integrated Systems
at the University of Virginia and Design Automation Technical Committee of the
IEEE Computer Society; 13-15 August 1990.

Dukes, M. A., F. M. Brown, and J. E. DeGroat. A Generalized Eztraction Sys-
tem for VLSI. July 1987-August 1990. WRDC Technical Report, WRDC-TR-90-
5021, Wright Research and Development Center, Wright-Patterson AFB OH, Au-
gust 1990.

Dukes, M. A, F. M. Brown, and J. E. DeGroat. “Verification of Layout Descriptions
Using GES,” Proceedings of the VHDL User’s Group Spring 1991 Conference. 63-72.
Menlo Park: Conference Management Services; 8-10 April 1991.

Dukes, M. A., F. M. Brown, and J. E. DeGroat. A Prolog System for Converling
VHDL-Based Models to Generalized Extraction System (GES) Rules. June 1990
to December 1990. WL Technical Report, WL-TR-91-5018, Wright Laboratory,
Wright-Patterson AFB OH, June 1991.

Dukes, M. A., I'. M. Brown, and J. E. DeGroat. “A Generalized Extraction System
for VHDL,” Proceedings of the Fourth Annual IEEE International ASIC Conference
and Ezhibit. P4-8.1-P4-8.4. New York: IEEE Press; 23-27 September 1991.

Ebeling, C. and O. Zajicek. “Validating VLSI Circuit Layout by Wirelist Compari-
son,” Proceedings of the IEEE International Conference on Computer-Aided Design.
172-173. New York: IEEE Press; 1983.

EIA VHDL Model Standards Committee, “EIA Commercial Component Model
Specification (Preliminary),” 5 September 1989.

Fujiwara, Hideo. Logic Testing and Design for Testability. Cambridge: The MIT
Press, 1985.

Galton, Antony, ed. Temporal Logics and Their Applications. San Diego: Academic
Press, 1987.

Gordon, Michael. The HOL Manual. 1987,

Gordon, Michael. “HOL: A Proof Generating System for Higher-Order Logic,” VLSI
Specification, Verification, and Synthesis, 73-128. Boston: Kluwer Academic Pub-
lishers, 1988.

Gordon, Michael. The HOL System Tutorial Cambridge Research Center of SRI
International under a grant from DSTO Australia, 8 December 1989,

147




[Gupta 91]

[Hayes 88]
[Hehne 84]
(IEEE 87]
[Linde 88]
[MacLe 90]
[Mano 79]
[Mano 82!
[McClu 56]
[Moszk 86]
[Ouste 84]

[Papas 88]

[Quint 88]
[Ramsa 91]
[Reint 90]

[Resch 69]
[Rudea 74)

[Schar 88]

[Seraf 90a]

[Seraf 90b]

Gupta, Aarti. “Formal Hardware Verification Methods: A Survey,” CMU Technical
Report, CMU-CS-91-193, Computer Science Department, Carnegie Mellon Univer-
sity, Pittsburgh, Pennsylvania 15217, (October 1991).

Hayes, John P., Computer Architecture and Organization, New York: McGraw-Hill,
Incoporated, 1988.

Hehner, Eric C. R., The Logic of Programming, Englewood Cliffs: Prentice Hall,
Incorporated, 1984.

IEEE, Computer Society Standards Committee, “IEEE Standard VHDL Language
Reference Manual,” ANSI/IEEE Std 1076-1987, IEEE Press, New York, 1987.

Linderman, R., K. Jones, and D. Gallagher, Sim-to-VHDL-Extractor (STOVE),
computer program developed at the Air Force Institute of Technology, 1985-1988.

MacLennan, Bruce J. Functional Programming: Practice and Theory. Reading:
Addison-Wesley Publishing Company, Incorporated, 1990.

Mano, M. M. Digital Logic and Computer Design. Englewood Cliffs: Prentice-Hall,
Incorporated, 1979.

Mano, M. M. Computer System Architecture, Englewood Cliffs: Prentice-Hall, In-
corporated, 1982.

McCluskey, E.J., Jr. “Minimization of Boolean Functions,” Bell System Technical
Journal, 35: 1417-1444 (November 1956).

Moszkowski, Ben. Ezecuting Temporal Logic Programs. New York: Cambridge, 1986.

Ousterhout, John K., “Switch-Level Delay Models for Digital MOS VLSI,” Proceed-
ings of the ACM/IEEE 21st Design Automation Conference. 542-548. New York:
IEEE Press; 1984.

Papaspyridis, A. C. “A Prolog-Based Connectivity Verification Tool,” Proceedings
of the IEEE/ACM Design Avtomation Conference. 523-527. New York: IEEE Press;
1988.

Quintus Computer Systems, Incorporated, Quintus Prolog Reference Manual,
Mountain View, California, 1988.

Ramsay, Allan. Formal Methods in Artificial Intelligence. Cambridge: Cambridge
University Press, 1991.

Reintjes, P. B. “A VHDL Parser in Prolog,” Technical Report, Research Triangle
Park, North Carolina, 1990.

Rescher, Nicholas. Many- Valued Logic. New York: McGraw-Hill, Incoporated, 1969.

Rudeanu, Sergiu. Boolean Functions and Equations. London: North-Holland Pub-
lishing, 1974.

Scharbach, P. N., ed. Formal Methods: Theory and Practice. Boca Raton: CRC
Press, Incoporated, 1988.

Serafino, K. M. and M. A. Dukes. VHSIC Hardware Description Language (VHDL)
Benchmark Suite. November 1989 to October 1990. WRDC Technical Report,
WRDC-TR-90-5026, Wright Research and Development Center, Wright-Patterson
AFB OH, October 1990.

Serafino, K. M. and M. A. Dukes. 1990 VHDL Users’ Group Fall Meeting. 193-201.
Menlo Park: Conference Management Services; 14-17 October 1990.

148




[Seraf 91a]

[Seraf 91b]

[Shann 49]

[Spick 83]

[Spick 85]

[Stana 77)
[Ster] 86)

[Takas 88|
[Terma 80]
[Terma 86)
[Tsui 87]

[Ulima 84]
[Weste 85]

[Wing 89

[Wing 90a]

[Wing 90b]

[Yaros 89]

Serafino, K. M. and M. A. Dukes. VADL and WAVES Descriptions for a Pseudo-
Random Pattern Generator. April 1991 to October 1991. WL Technical Report,
WL-TR-91-5037, Wright Laboratory, Wright-Patterson AFB OH, June 1991.

Serafino, K. M. and M. A. Dukes. VHDL and WAVES Descriptions for a Pseudo-
Random Pattern Generator,” VHDL International Users’ Forum. 67-75. Menlo
Park: Conference Management Services; 28-30 October 1991.

Shannon, C.E., “The Synthesis of Two-Terminal Switching Circuits,” Bell System
Technical Journal, 28: 59-98 (1949).

Spickelmier, R. L. and A. R. Newton, “WOMBAT: A New Netlist Comparison
Program,” Proceedings of the IEEE International Conference on Computer-Aided
Design. 170-171. New York: IEEE Press; 1983.

Spickelmier, R. L. and A. R. Newton, “Connectivity Verification Using a Rule-Based
Approach,” Proceedings of the IEEE International Conference on Computer-Aided
Design. 190-192. New York: IEEE Press; 1985.

Stanat, Donald F. and David F. McAllister. Discrete Mathematics in Computer
Science. Englewood Cliffs: Prentice-Hall, 1977.

Sterling, Leon, and Ehud Shapiro. The Art of Prolog. Cambridge: The MIT Press,
1986.

Takashima, M., et. al., “A Circuit Comparison System with Rule-Based Functional
Isomorphism Checking,” Proceedings of the IEEE/ACM Design Automation Con-
ference. 513-516. New York: IEEE Press; 1988.

Terman, Chris. Computer Program. “ESIM.” 1980.

Terman, Chris. “Esim,” Berkeley Distribution of of Design Tools. Computer Science
Division, EECS Department, University of California at Berkeley, 1986.

Tsui, Frank F. LSI/VLSI Testability Design. New York: McGraw-Hill Book Com-
pany, 1987.

Ullman, Jeffrey D. Computational Aspects of VLSI. Rockville, MD: Computer Sci-
ence Press, 1984.

Weste, N. H. and Kamran Eshraghian. Principles of CMOS VLSI Design A Systems
Perspective. New York: Addison-Wesley Publishing Company, 1985.

Wing, Jeannette M. “What is a Formal Method,” CMU Technical Report, CMU-
CS5-89-200, Computer Science Departinent, Carnegie Mellon Univers:ty, Pittsburgh,
Pennsylvania 15217, (10 November 1989).

Wing, Jeannette M. “A Specifier’s Introduction to Formal Methods,” CMU Tech-
nical Report, CMU-CS-90-13b, Computer Science Department, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15217, (21 May 1990).

Wing, Jeannette M. “A Specifier’s Introduction to Formal Methods,” Computer,
23:9 8-24 (September 1990).

Yarost, S. A. 4 Circust Exiraction System and Graphical Display for VLSI Design.
MS thesis, AFIT/GCE/ENG/89D-9. School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH December 1989 (AD-A215668).

149




Vita

Captain Michael A. Dukes was born in Lawton, Oklahoma on 3 June 1960. Following gradua-
tion from high school at Springfield, Virginia in 1978, he received an appointment to the US Military
Academy at West Point, New York. He graduated from the Military Academy in May 1982, with
a degree of Bachelor of Science and a commission in the US Army. After completion of the Signal
Officer Basic Course, Captain Dukes was assigned to Fort Gordon as a Teleprocessing Operations
and Computer Automation Officer within the Directorate of Information Management. Prior to
entering the Air Force Institute of Technology, he attended the Signal Officer Advanced Course.
Captain Dukes graduated from the Air Force Institute of Technology in September 1988 with a
degree of Master of Science in Electrical Engineering. Following graduation, Captain Dukes will be
assigned to the Electronic Technology and Devices Laboratory, US Army Laboratory Command,

at Fort Monmouth, New Jersey.

Permanent address: 18901 N.E. 237th Terrace
Fort McCoy, Florida 32637

150




REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public epurt ng burden tor this coilection of INfOrmation s astimated to average 1 hour per resporse. including the time for reviewing instructions, searching existing data sources,
gatherinq 1nd Mmaintaining the data needed. and compieting and reviewing the codection of information  Send comments r
collecuan 2t (Marmation. .nctuding suggestions 10r reducing this Dufden to Wasnington Headquarters Secvices. Directorate for Information Operations and Reports, 1215 jeHterson
Davis Highway. Suite 1204 Arfington, VA 72202-4302. snd to the Ottice of Management and Budget, Paperwark Reduction Project (0704-0188), washington, DC 20503,

arding this burden estimate or any other aspect of thiy

1. AGENCY USE ONLY (Leave blank) [2. REPORT DATE

March 1992

4. TITLE AND SUBTITLE

HARDWARE-VERIFICATION THROUGH LOGIC EXTRACTION

6. AUTHOR(S)

Michael A. Dukes, Captain, USA

s.

3. REPORT TYPE AND DATES COVERED

Roctoral Disserta

tian

FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology, WPAFB OH 45433-6583

PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/DS/ENG/92-1

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSORING / MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a3. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distributjon unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

A Prolog-based system is described which employs logic-extraction to perform hardware-verification. The
extraction rules are built automatically from hierarchical structural VADL models, enabling the equivalence
of a structural VHDL description and a layout specification to be verified. Pin-to-pin critical-path analysis
is performed within the logic-extraction process; meny non.ritical paths arz pruned early, making pin-to-pin
critical path analysis of large circuits feasible. It is demonstrated that a design methodology based on logic
extraction, VHDL, and a layout tool can provide a fabricated functionally-correct IC design without circuit-
level or switch-level simulation. This methodology is shown to be practical for VLSI designs up to 250,000
transistors in size. The properties of correctness, completeness, and guaranteed termination are examined

for the extraction process.

14. SUBJECT TERMS

VLSI, VHDL, Prolog, Circuit Extraction, Reverse Engineering,
Computer Aided Design, Integrated Circuits, Artificial

15. NUMBER OF PAGES
165

16. PRICE CODE

Intelligence
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACY
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500

Standard Form 298 (Rev 2-89;
Prescribed by ANSI Std 739-18
298.102 )




